
AUDACIOUS: User-Driven Access Control with
Unmodified Operating Systems

Talia Ringer Dan Grossman Franziska Roesner

University of Washington
Seattle, WA, USA

{tringer,djg,franzi}@cs.washington.edu

ABSTRACT
User-driven access control improves the coarse-grained ac-
cess control of current operating systems (particularly in
the mobile space) that provide only all-or-nothing access to
a resource such as the camera or the current location. By
granting appropriate permissions only in response to explicit
user actions (for example, pressing a camera button), user-
driven access control better aligns application actions with
user expectations. Prior work on user-driven access con-
trol has relied in essential ways on operating system (OS)
modifications to provide applications with uncompromisable
access control gadgets, distinguished user interface (UI) ele-
ments that can grant access permissions.

This work presents a design, implementation, and evalu-
ation of user-driven access control that works with no OS
modifications, thus making deployability and incremental
adoption of the model more feasible. We develop (1) a user-
level trusted library for access control gadgets, (2) static
analyses to prevent malicious creation of UI events, ille-
gal flows of sensitive information, and circumvention of our
library, and (3) dynamic analyses to ensure users are not
tricked into granting permissions. In addition to providing
the original user-driven access control guarantees, we use
static information flow to limit where results derived from
sensitive sources may flow in an application.

Our implementation targets Android applications. We
port open-source applications that need interesting resource
permissions to use our system. We determine in what ways
user-driven access control in general and our implementa-
tion in particular are good matches for real applications.
We demonstrate that our system is secure against a variety
of attacks that malware on Android could otherwise mount.

1. INTRODUCTION
Modern operating systems (such as mobile platforms) iso-

late applications and limit their privileges. Mobile platforms
do not let applications access user resources — such as the
camera or location — unless the user grants those permis-
sions to the application. Despite this, applications can still

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978344

Figure 1: UI elements in applications that, when
pressed, cause the application to access sensitive re-
sources. Clockwise from top left: Location in Google
Maps, file system in Gmail, camera and microphone
in WhatsApp, microphone in Google Search. Mod-
ern OSes do not enforce that resources are accessed
only through these elements.

steal data or take actions without the user’s intention or
even knowledge. For example, the FTC recently took action
against a flashlight application for leaking user location to
advertisers [6], and Android malware is known to covertly
send costly premium SMS messages [35].

Mobile platforms typically grant permissions through install-
time manifests or runtime prompts. These access control
models are problematic: Users find them difficult to un-
derstand, and they allow application behaviors that violate
user expectations [4, 8, 24, 31]. Prior work introduces user-
driven access control [24] to improve these models. In user-
driven access control, the system extracts permissions infor-
mation from the user’s interactions. Access control gadgets
(ACGs) [24] are one way of realizing user-driven access con-
trol. ACGs are special user interface (UI) elements that let
applications access sensitive resources only when the user
naturally interacts with that portion of the application’s UI.
Figure 1 shows examples of ACG-like buttons.

User-driven access control is not on a clear path to reach-
ing users. Prior work instantiating ACGs [23, 24] modifies
the target OS (Android in the former [23] and ServiceOS [28]
in the latter [24]). Changing the OS poses serious deploy-
ability challenges. It requires the companies that develop
these OSes to make supporting ACGs a priority. Such a
drastic change requires significant development effort and
impedes backwards compatibility for existing applications.
Furthermore, third-party devices often use old OS versions,
so there is a long delay before changes reach users [14]. Re-
cent data from the Google Play Store shows that 92.5% of
current Android devices run old API versions [1].

Our work makes user-driven access control practical and
immediately deployable. We present a design, implementa-

tion, and evaluation of user-driven access control that works
with no operating system modifications. Our design com-
bines a secure library with static and dynamic analyses to
ensure that applications can access sensitive resources only
through distinguished UI elements.

We provide the same guarantees as the original user-driven
access control design [24]: The application cannot access a
different resource; the application also cannot access the
resource at a different time.1 We move beyond the original
design to provide an additional guarantee: The application
cannot use the resource for a different purpose. Consider
a simple camera application: The user expects it to access
just the camera, just when the user presses the camera but-
ton, and just to save the photo (not to send it over the
network). We enforce this without modifying the OS.

In summary, we contribute the following:

1. We enable user-driven access control in entirely un-
modified operating systems by combining a secure li-
brary design with static and dynamic analyses.

2. We instantiate this design in a concrete implementa-
tion for Android, which we call AUDACIOUS (An-
droid User-Driven Access Control in Only User Space).

3. We integrate AUDACIOUS into real applications and
evaluate how well user-driven access control fits appli-
cations in practice.

4. We evaluate the benefits of an approach that requires
no OS changes and identify key areas where even lim-
ited OS support would be beneficial.

2. CONTEXT
This work targets modern operating systems. These OSes

isolate applications and grant them limited permissions. We
assume a permission model analogous to the latest Android
(API level 23): The OS automatically grants “normal” per-
missions (for example, network access) at install-time. It
grants “dangerous” permissions (for example, the camera)
through a prompt to the user at the time of initial use. Once
the OS grants permissions, it never revokes them unless the
user explicitly revokes them, and it allows the application to
use the resources however it wishes. Though we focus our
implementation efforts on Android, the broader concepts ap-
ply to any modern OS.

2.1 Goals
We aim to support user-driven access control though ac-

cess control gadgets. Building on the work that introduced
ACGs [24], we maintain the first goal:

Goal 1: User-Driven Access Control. Our design should
ensure that applications can access sensitive resources only
when the user interacts with the corresponding ACG in that
application’s UI. It should guarantee this even in the face of
malicious applications that attempt to circumvent the user
or trick the user into interacting with ACGs.

We introduce three additional goals:

Goal 2: Unmodified Operating System. Our design
should not make any modifications to the OS.

1The original design also guarantees that a different ap-
plication cannot access the resource. We assume an OS
that isolates applications, so this is inherently true.

Goal 3: Regulate Resource Use, not Just Access. In
the original ACG design, once an application has access to
a resource, it may use the resource however it wants. For
example, an application may use the user’s location both to
map the user’s run (the expected use) and to send to an
advertising server (the unexpected use). Our design should
provide guarantees about the flow of resources.

Goal 4: Permission Model Flexibility. User-driven ac-
cess control is not well-suited for all application scenarios [7].
Some applications may require the ability to access sensi-
tive resources in the background without explicit user in-
teraction. These applications are not necessarily malicious.
Consider a calendar application that stays in sync with an
online calendar. This application may wish to communicate
silently with the calendar over the internet rather than ex-
plicitly ask the user to sync the calendar. Our design should
allow these applications to use alternative permission models
for some of their functionalities.

2.2 Threat Model
We define our system as sound if it guarantees for every

application that every sensitive resource is accessed as a re-
sult of a legitimate user interaction with the expected UI for
the ACG and used only as permitted. That is, the applica-
tion does not access a different resource, access the resource
at a different time, or use the resource for a different pur-
pose. We pursue this in the context of the following threat
model.

We assume that the OS is trustworthy and uncompro-
mised. We do not modify the OS; instead, we implement a
secure library. We assume that our library is implemented
correctly. We assume that the static analysis tools and their
outputs are trusted. For the sake of simplicity, we accom-
plish this by adopting the application store model: Users
download applications from an application store and the ap-
plication store runs our analysis tools prior to approval.

Our adversary is a skilled application developer who aims
to improperly access sensitive resources such as the camera
or location. That is, he attempts to access resources in a
way that circumvents the ACG-based access restrictions. He
may do so by misusing the trusted library, evading analysis
tools, misleading the user, or bypassing the trusted library.

Our design and implementation assume all code in the ap-
plication is well-typed Java (we do not support native code).
We consider the following classes of attacks out of scope:
phishing-style attacks (in which users misidentify applica-
tions) and side-channel attacks.

3. TECHNIQUES FOR SECURING ACGS
This section describes our high-level design for securely

supporting user-driven access control without OS support.
Our design (summarized in Table 1) combines a secure li-
brary and program analyses. Applications include our li-
brary. In our library, ACGs encapsulate the details of both
resource APIs and the UI elements through which users
grant permissions to access resources. Our library prevents
applications from modifying the ACG UI after it is created
and from modifying the ACG validation logic. The library
and program analyses together ensure that resource access
is authentic (intended by the user) using the techniques we
introduce in this section. These techniques occur in three
conceptual phases:

Goal Technique Sections

Developer cannot modify the ACG Library design §3 and §4.2

Developer can easily include and deploy ACGs Library design §3 and §4.2

Events are authentic Static event analysis §3.1 and §4.3

Resources, unless specified, are accessed through ACGs Static information flow analysis §3.3 and §4.5

Resources, once accessed, are used as expected Static information flow analysis §3.3 and §4.5

UI does not deceive the user Dynamic bitmap check §3.2 and §4.4

User has enough time to perceive the valid UI Dynamic bitmap check at random intervals §3.2.3 and §4.4

Table 1: ACG design overview.

1. Event Flow User→ UIseen
The user (not the application) interacts with the UI.

2. UI Context UIseen ' UIACG

The UI does not trick the user into interacting with it.

3. Resource Flow UIACG → ACG
∗→ . . .

The application accesses the resource through the ACG
and uses it appropriately.

The library combined with these checks form a sound sys-
tem: An application that passes all three of these checks
must use the resource in a way that is consistent with user
expectations. Check (1) guarantees that the user genuinely
interacts with the ACG UI. Check (2) guarantees that this
interaction is deliberate, and that this UI does not mislead
the user about the resource that the ACG guards (different
resource). Finally, check (3) guarantees that the application
does not access the resource when the user does not inter-
act with the ACG (different time) or use the resource in an
unexpected way (different purpose).

3.1 Event Flow: User→ UIseen

If the application, not the user, triggers the UI events
that access the ACG, then the application impersonates the
user. This allows the application to perform arbitrary ac-
tions. The flow from the user to the UI must be authentic.

Attack. Eve is developing an evil camera application that
secretly takes pictures. She writes code that clicks on the
camera ACG button automatically. This is direct event
forgery : The application creates fake user events.

Eve realizes that this attack may be easy to catch. She
disguises the events to make them appear authentic. She
adds a misleading button to her application. Whenever the
user clicks on this button, she intercepts the event and passes
it to the camera ACG. This is indirect event forgery : The
application uses an authentic event to trigger a forged event.

Defense. In both attacks, the application interferes with
the flow of events from the user to the ACG UI. To prevent
these attacks, we must ensure that events flow from the user
to the ACG UI without any application interference. We
can accomplish this through a taint analysis. Taint analysis
tracks the flow of data to some sensitive sink and marks
anything which passes through a certain source as tainted.
In our case, the sink is the ACG UI code and the source is
the application code. That is, we consider events tainted if
they pass through application code on the way to an ACG.

More simply and conservatively, we can prohibit appli-
cations from constructing and modifying events at all. We
suspect the choice of which approach to take should depend
on how often benign applications create and modify events.

Time of Defense. We accomplish the event analysis stat-
ically. A dynamic approach may incur unnecessary perfor-
mance overhead since it must occur for every event. This
is especially pronounced without OS support; the analysis
must determine if an event is tainted rather than rely on an
OS-native flag. Since we have enough information for either
the conservative check or the taint analysis at compile-time,
we prefer a static check.

3.2 UI Context: UIseen ' UIACG

The UI must not trick the user. That is, the actual UI that
the user interacts with must be consistent with the UI that
we expect for the ACG. Attacks that present UIs to mislead
the user are clickjacking attacks. The root cause of click-
jacking is that UI elements are presented out-of-context [12].
We define what it means for the UI to be in-context at the
time a user interacts with an ACG:

1. Internal UI UIapp ' UIACG

The UI for the ACG inside of the application matches
the expected UI for the ACG.

2. External UI UIapp = UIapp + UIother
The application UI is not covered by anything outside
of the application.

3. UI Consistency UIapp = UIseen
The UI we check is the same UI the user perceives.

3.2.1 Internal UI: UIapp ' UIACG

The internal application UI must not be deceptive.

Attack. Eve is developing an evil flashlight application that
secretly records video. She disguises the video recording
ACG as a flashlight button. She covers the video recording
ACG button with a small button that says “flashlight.” This
button hides the intent of the video recording ACG, but
still leaves enough room around the edges for the user to
accidentally click on it. This is a cover attack.

Defense. The UI in the location of the ACG needs to be an
acceptable transformation of the UI that the ACG expects.
The ACG defines the UI it expects and specifies what trans-
formations are acceptable. We check this by comparing the
bitmap of the UI to the bitmap that the ACG expects.

In the most basic transformation, the UI must exactly
match a predefined UI for the ACG. Often, it is desirable
for the transformation to be stateful. For example, a button
with “on” and “off” states can expect one UI for the “on”
state and a different UI for the “off” state. This way, an
application cannot trick the user by switching the two states.

An ACG may define a more flexible notion of an accept-
able transformation. It may, for example, permit an appli-
cation to place an element on top of its UI as long as the

element does not cover its text. It may call an image-to-text
function and ensure that the actual UI has the same text to
a user as the ACG UI. It may expose some of its internal
UI logic and permit an application to change its colors, but
only if the background and the text preserve the same con-
trast. It may ask the application to provide a proof that the
transformation is acceptable.

3.2.2 External UI: UIapp = UIapp + UIother

The ACG UI must not be covered by a UI element from
a different application or at the system level.

Attack. Eve is developing an evil voice recording applica-
tion. The user selects a folder and records audio. When the
user presses the “stop” button, Eve exposes a system-level
notification that says that the audio is done recording, and
that the user should click on the notification to save the au-
dio to the folder. Underneath this, Eve places a file deletion
ACG button. When the user clicks on the notification to
save the audio, the system delegates the event downward
and deletes all of the files in that folder instead. This is
called tapjacking [19, 21].

Defense. We use existing OS features to defend against
tapjacking attacks without modifying the OS. We utilize an
OS-native flag to determine when the ACG UI is covered by
a UI element outside of the application. We reject events
on which this flag is set. An alternate approach would be to
take a screenshot of the entire UI (including the UI outside
of the application) and crop it to the correct location. This
may not be allowed by the OS, however, as it introduces
security risks: It allows applications to use screenshots to
extract sensitive content from each other. Regardless, the
library needs some support from the OS to handle tapjacking
attacks; we discuss this in Section 5.

3.2.3 UI Consistency: UIapp = UIseen

The UI we check must be the same as the UI the user
perceives, otherwise the check does not protect the user.

Attack. Eve is developing an evil game that collects in-
formation about users. She exposes two buttons: an ACG
button that toggles location and a button that is part of the
game. She places the game button on top. She expects the
user to press it at a certain point in the game. Just before
this, she switches the location ACG button on top of it. She
tricks the user into granting the application permission to
access location. This attack is called bait-and-switch [12].

Eve isn’t sure she will always be able to trick the user into
clicking this button, so she saves the event to the location
button. She schedules this event to play back to the ACG
in the future. This is a replay attack.

Defense. The event we check must occur in the correct
location at the correct time. We check that the location of
the event is the location of the ACG element, and that the
time of the event is the current time minus some buffer.2

The user also must have enough time to perceive the UI
before interacting with it. The bait-and-switch attack is the
result of a UI check that occurs too late [12]. The UI check
does not occur until the time of the event, but it needs infor-
mation about the UI at the time the user perceives it before

2Since we prevent event construction and modification, an
application cannot change an event’s location or time.

the event. We accomplish this through a periodic random
check. The check runs randomly within the boundaries of
some check frequency. If it fails, it invalidates future events
to the ACG until some invalidation interval passes. As long
as this interval is large enough, this guarantees that, at the
time of an event, the user has perceived the UI for suffi-
ciently long. If an ACG is already invalid and the check
fails, the check extends the amount of time for which it is
invalid by the interval; otherwise, it allows the interval to
run its course.

We could instead protect against bait-and-switch attacks
by running our check in response to changes in layout, but
this would be risky: We would then need to prevent appli-
cations from intercepting the check to show the expected UI
only when the check runs. The check needs to be unpre-
dictable to the application developer. The developer may in
theory be able to fool the random check by responding to
events related to UI rendering; we are unable to implement
this attack on Android. If it is possible, we may deter it by
introducing a random delay during the check itself.

Choosing the ideal frequency and interval is a trade-off
between user experience and security: If we check too fre-
quently, we incur performance overhead, but if we check too
infrequently, we risk missing attacks. If we invalidate for
too long, then a benign application which changes its UI
will provide a poor experience, but if we invalidate for too
little time, then the user may not have enough time to per-
ceive the UI. We suspect that the optimal choices depend
on the sensitivity of each individual ACG. An ACG which
deals with payment methods, for example, will benefit from
checking more frequently and invalidating for longer than a
voice recording ACG. We evaluate the performance impacts
of different frequencies in Section 6.3.

3.2.4 Time of Defense
We accomplish the UI context check dynamically. The

check must provide guarantees about both what UI the ap-
plication presents and when the application presents it rela-
tive to any possible user event. A check that only considers
what UI the application presents may catch an innocent ap-
plication that modifies the UI at a time that does not deceive
the user. A check that only considers when the application
makes UI changes (a technique used to detect covert appli-
cation activity [25]) does not address our threat model: A
malicious developer can evade the analysis by changing the
UI at the right time, but not in a way that is informative
to the user. Existing work that accomplishes both of these
goals does so through manual image comparison [9, 25].

3.3 Resource Flow: UIACG → ACG
∗→ . . .

The application must not circumvent the ACG and access
the resource with no user interaction or in response to in-
teraction with its own UI elements. The application must
also use the resource appropriately. This goes beyond the
original user-driven access control work, which provides no
guarantees on resource use.

Attack. Eve is developing an evil video application. The
user expects the application to record and save videos. The
user also expects to play his own videos and to play videos
on the internet. In reality, the application automatically
uploads the user’s videos to the internet for all other users
to see. This is a resource flow attack.

ACG Interfaces 161

Four ACG Implementations 655

ACG UI Logic 249

UI Validation Logic 204

Event Analysis 138

Table 2: Java lines of code in AUDACIOUS, not
including existing analysis tools. We implement four
ACGs only as needed: one for immediate location
access, one for periodic location updates, one for
recording audio, and one for playing audio.

Defense. Resources are information, and so the flow of
resources is an information flow problem. Information flow
analysis tracks the flow of program information from sources
(for example, user input or the camera) to sinks (for exam-
ple, the display or the internet). We treat each ACG as
a special source or sink. We then ensure that any resource
which flows to a given sink is accessed through the ACG. For
Eve’s application, we can specify that it is legal for a video
to flow from the video ACG to the user’s filesystem, but that
it is illegal for a video to flow from a different source (for
example, an alternative video recording API) to the user’s
filesystem.

Viewing this as an information flow problem buys us con-
trol: We can specify not only what resources must be ac-
cessed through ACGs, but also how the resources may be
used. Eve’s application should have both internet and video
recording permissions, but it should not send videos over
the internet (that is, videos should not flow to the inter-
net). Furthermore, we can verify how resources flow not
only within an application, but also between applications.

This approach also buys us flexibility: In practice, user-
driven access control is not sufficient for all modes of interac-
tion with resources [7]. A benign version of Eve’s application
may wish to automatically sync the user’s video feed online
without burdening the user with explicit interaction. It can
do so by specifying that videos can flow from the internet.

We assume that the underlying information flow tool cor-
rectly handles implicit flow, which may leak information
from sensitive sources through conditionals [5]. We allow
applications to access resources without using our library,
but then never use them for anything. These resources can-
not be misused by the application.

Time of Defense. We accomplish the information flow
analysis statically. This allows the application to provide
guarantees on how information flows to the user before re-
leasing the application. This also ensures that there is no
negative impact on performance.

4. IMPLEMENTATION: AUDACIOUS
We turn to the implementation of a system for user-driven

access control that requires no explicit OS support. We
call our system AUDACIOUS: Android User Driven Access
Control in Only User Space. The size of our implementation
is modest (Table 2).

4.1 System Overview
AUDACIOUS consists of two primary components. The

first is a trusted ACG library (Section 4.2), which exposes UI

Figure 2: Approval stage. The app includes the
ACG library, the SPARTA library, the annotated
code, and a flow policy file. The annotations help
tell SPARTA which flows are present, and the flow
policy tells SPARTA which flows are allowable [5].
A human verifier inspects the analysis output.

elements that provide Android resource access (for example,
camera access). Application developers include this library
and use its UI elements (for example, camera buttons). The
library includes dynamic checks to ensure that application
developers do not mislead the user (Section 4.4).

The second component is a set of static analysis tools
which AUDACIOUS uses to verify that application devel-
opers correctly include and use the ACG library, and which
allow us to support more flexible permission models than
strict user-driven access control. This set consists of an
event analysis (Section 4.3) and the information flow tool
SPARTA [5] (Section 4.5).

These components are combined in two stages. In the app
store approval stage (Figure 2), the application goes through
a combined automatic and manual approval process before
it is released in an app store. Our implementation has two
static analyses: the event analysis, which runs on the byte-
code, and SPARTA, which runs on the source code. Both
report output to a human verifier. The verifier investigates
any problems and decides whether to release the application.
This matches the approval model proposed by SPARTA [5].
In AUDACIOUS, the verifier also inspects any usages of re-
flection to ensure that the developer does not circumvent
the library or analyses.

The app store approval model is just one enforcement
method. Alternatively, an organization can incentivize de-
velopers to use AUDACIOUS by certifying applications as
user-driven access control compliant. We assume the app
store approval model for the sake of simplicity.

In the runtime stage (Figure 3), AUDACIOUS prevents
additional malicious behavior from impacting the user. In
particular, it monitors the relationship between user expec-
tations and the runtime behavior of an application. In prac-
tice, this means monitoring the relationship between the UI
and the event that corresponds to a user action. Figure 3
shows three examples of monitoring application behavior.

4.2 Secure Library Design
We implement the ACG library ACGLib in Android. An-

Figure 3: Runtime application monitoring for three
scenarios. A) The UI is consistent with the event,
B) the event is deceptive, and C) the UI is deceptive.
AUDACIOUS accepts only scenario (A).

droid development is event-driven: When the user interacts
with the UI, Android dispatches events which eventually
reach application code and direct behavior. The building
blocks of an application are Activitys. An Activity is a
single thing that a user can do; this usually corresponds to a
single screen of an application. When an application starts,
it executes its main Activity, which is associated with a
layout. Android exposes a layout’s UI elements as Views.
Views are part of a view hierarchy, with child Views inside
of parent Views. The developer can change this hierarchy
programmatically.

ACGs. We implement each ACG as a Fragment. A Frag-

ment is an isolated part of an Activity (for example, a single
button and an action for that button). A Fragment con-
tains a View that it inserts at runtime. Because of this, each
ACG only needs to implement resource-accessing behavior
and not any secure UI logic. The application cannot access
any of the validation or resource-accessing logic to remove
or modify it.

We expose two ACG interfaces: one for temporary permis-
sions and one for permanent permissions. Temporary ACGs
provide resource access only immediately after user interac-
tion, while permanent ACGs provide resource access from
the time of initial interaction until the user disables them.
In true Android fashion, these are event-driven: The appli-
cation implements a listener. The listener is notified when
the resource availability state changes. When the resource
is available, the application may use it as desired.

ACG UIs. We implement a ViewWrapper to prevent appli-
cations from modifying the ACG UIs after creation. Each
ACG UI has an associated View. The ViewWrapper contains
this View and does not expose it to the application. It de-
fers all rendering logic and delegates all events to the internal
View. After the internal View handles events, the ViewWrap-

per requests layout. When the internal View changes its
layout, the ViewWrapper notifies Android to draw the View

again.

Using the Library. ACGLib is designed to be easy to use.
An application developer can include an ACG in one of two
ways: He can define it in a layout and then bind to it from

Builder().withRRListener(audio, new RRL() {
public void onResourceReady() {

try {
speaker.passInput(audio.getResource());

} catch (ACGResourceAccessException e) {
// error getting file

}
}

}).withRRListener(speaker, new RRL() {
public void onResourceReady() {

try {
speaker.getResource();

} catch (ACGResourceAccessException e) {
// error playing file

}
}

}).build();

Figure 4: Chaining ACGs. The AudioACG records
and saves audio, then passes the recorded file to the
PlayAudioACG. The PlayAudioACG plays the recorded
audio to the speaker when the speaker is available.

within an Activity, or he can add it programmatically at
runtime. Next, the developer must implement ACGListener
and override buildACGListeners(), which attaches listeners
to the ACGs. The listeners react to changes in resource
availability. Developers can also pass input to ACGs and
chain ACGs. For example, the ACG for playing audio can
take input from the ACG for recording audio (Figure 4).

4.3 Event Flow: User→ UIseen

Both direct and indirect event forgery attacks can be in-
stantiated two ways in Android: by constructing or modi-
fying events, or by calling the methods that events trigger
(such as performClick()). In the first case, application in-
terference is application code that runs after setup code be-
fore the event itself reaches the ACG; in the second case,
it is application code that runs after setup code before the
result of the event reaches the ACG.

We stop applications from constructing or modifying events
and from programmatically clicking elements statically. We
build our analysis using Soot.3 Our analysis does not al-
low application code to call click methods on any subclass
of View, and it does not let applications call construction,
modification, or copying methods on any event subclass. It
operates on the bytecode rather than on the source code,
since there is enough information present in the bytecode.

We do not stop applications from dispatching events. Event
flow through the view hierarchy in Android is complex, so
banning all methods which propagate events through the
hierarchy is dangerous and does not scale. This does not
impact the soundness of AUDACIOUS: Since applications
cannot modify, create, or copy events, the only events that
applications can dispatch are authentic. This means that
at runtime, both the location and the time of the event are
authentic, so we can defer reasoning about these to our UI
context check (Section 4.4).

Our implementation is conservative: It guarantees that
applications do not interfere with the flow of events from
the user to the UI by preventing applications from interfering
with events in any way. Some applications modify events for
the sake of upscaling or UI customization. We acknowledge

3https://sable.github.io/soot/

this as a limitation of our implementation. Our evaluation of
event usage in practice (Section 6.4) shows that this behavior
occurs rarely enough that it is human-verifiable.

4.4 UI Context: UIseen ' UIACG

Android provides a method that a security-sensitive View

can override to implement fine-grained security checks for
events. We implement our UI context check in this method.

Internal UI: UIapp ' UIACG. An application may mis-
lead the user by modifying a View or by covering it with a
new View. To prevent this, each ACG contains a Bitmap

validator. The validator takes a View and decides whether
the Bitmap rendering of that View is acceptable. It is flexi-
ble enough to support different notions of acceptable trans-
formations as well as application-supplied proofs. Different
ACGs can use different implementations of the validator.

We implement two example validators. The non-stateful
validator checks for equality between a Bitmap rendering of
the ACG View in isolation and a Bitmap rendering of the
supplied View. This is the default validator, as it is the
most conservative. The stateful validator takes both a View

and a state, and expects different UIs for different states.
We use this validator for the LocationACG, which expects
one UI for its “on” state and a different UI for its “off” state.

External UI: UIapp = UIapp + UIother. Tapjacking in
Android occurs through Toasts. A Toast is a system-level
pop-up notification. A voice recording application, for ex-
ample, may use a Toast to alert the user that it has saved
the audio to the device. Android delegates events which pass
through a Toast to the UI element underneath it. Malicious
applications abuse this feature to trick users into clicking
on elements [19, 21]. This is a concern not only within an
application, but also between applications, since a Toast is
outside of the application’s view hierarchy.

To prevent these attacks, Android provides the native flag
FLAG_WINDOW_IS_OBSCURED. This is set on an event whenever
the View on which the event occurs is either partially or
wholly obscured by a window outside of the view hierarchy,
regardless of whether the event passes through the obscured
part of the window [3]. We reject an event whenever this flag
is set and invalidate the UI for a suitable period of time.

Due to a bug in Android, the flag does not handle partially
obscured views correctly. A malicious application can, for
example, expose a Toast which obfuscates the intent of the
ACG, but leave room around the edges. Clicks which pass
through those edges ought to be invalidated, but they are
not. We have reported this to Android. It is scheduled to
be investigated for a future release.

UI Consistency: UIapp = UIseen. To ensure that the
event occurs in the correct location, we verify that it occurs
within the boundaries of the ACG View element. To ensure
that the event occurs at the correct time, we verify that no
amount of time longer than some buffer has passed (that is,
the current time is within the boundaries of the time of the
event and the time of the event plus the buffer).

We implement random checks to handle bait-and-switch
attacks. We expose two intervals at the library level: the
maximum frequency of random checks and the invalidation
interval for failed checks. Individual ACGs can configure
these intervals independently. We set the default time buffer
for events to the rate at which random checks occur. This

public final class LocationACG {
@Source(value = "ACG(location)")
public Location getResource();

}

public final class PlayAudioACG {
public Void getResource();

@Sink(value = "ACG(play_audio)")
public void passInput(File file);

}

Figure 5: Stubs for two ACGs. The source of any
Location from the LocationACG is ACG(location), and
the sink of any File passed into the PlayAudioACG is
ACG(play_audio).

ACG("audio_recording") -> FILESYSTEM("/ACG")
FILESYSTEM("/ACG") -> ACG("play_audio")
ACG("audio_recording") -> ACG("play_audio")

Figure 6: Flow policy file for a voice recorder ap-
plication that uses ACGs. The application can save
and play its recordings.

way, a random check is guaranteed to happen in the time an
event is valid.

We are once again limited by our lack of OS support in
that we are unable to randomly check the UI outside of the
view hierarchy. In order to check FLAG_WINDOW_IS_OBSCURED

without an authentic event, we must construct an event in
the location of the ACG. However, if we construct an event
programmatically, the flag is never set.

4.5 Resource Flow: UIACG → ACG
∗→ . . .

We use SPARTA [5] to verify flow from the ACG UI to the
resource itself and onward. SPARTA is an information flow
tool which uses static type-checking to infer illegal flows.
SPARTA operates on the source code. Application develop-
ers annotate code with sources and sinks. The annotation
burden for developers is typically low [5]. SPARTA includes
trusted annotations in the form of stub files to minimize
annotation burden; this includes most Android core code.
SPARTA compares the flows it finds with allowable flows
defined in a flow policy file (Figure 6). A human verifier
inspects the source code and the output of SPARTA in the
context of this policy.

SPARTA alone ensures that the application uses resources
correctly. However, it does not ensure that the application
accesses the correct resources at the correct times. For ex-
ample, SPARTA will catch an application that sends videos
over the internet if the application should never send videos
over the internet. However, it will not catch an application
that ought to send videos over the internet with the user’s
consent, yet actually sends videos over the internet without
the user’s consent. AUDACIOUS provides more powerful
guarantees than SPARTA alone.

We extend SPARTA with the notion of an ACG. We
implement an ACG type, which we parameterize by the
name of the ACG. This way, SPARTA can distinguish ACGs
from other sources and sinks, and it can distinguish differ-
ent ACGs from each other. We add stub files that inform
SPARTA when resources flow to or from an ACG. Adding a
new ACG only involves a few lines of stubbing in SPARTA

(Figure 5) and decreases annotation burden for the applica-
tion developer.

The underlying analysis for SPARTA is sound and cor-
rectly handles implicit flow [5]. SPARTA also handles reflec-
tion and Intents (two major challenges for static analysis of
Android applications) soundly [2]. Intents are objects that
Android applications use to communicate between parts of
an application or between applications. Reflection and In-

tents complicate control flow. Applications that use these
features must annotate their applications accordingly [2].

In AUDACIOUS, applications may use alternative per-
mission models for any functionality for which user-driven
access control is not ideal by including non-ACG flows in
their flow policies. These applications must have their flow
policies approved. Applications that use ACGs without ad-
vanced functionality only require manual approval in the
case of false positives.

5. DISCUSSION: OS SUPPORT
The previous sections show that supporting user-driven

access control without explicit OS support is possible, mov-
ing beyond prior work on ACGs (e.g., [24]), and enabling
ACGs to be used and enforced without requiring major
changes to already-deployed OSes. We take a step back
and reflect on the benefits of ACGs that don’t require OS
support, as well as the lessons we learned about the possible
role of OS support. We identify areas where limited (not
ACG-specific) OS support is necessary or beneficial, and we
identify fundamental limitations of not having OS support.

5.1 Benefits of a User Space Approach
An approach that provides and ensures the security of

ACGs without OS support has clear benefits.

Deployability. Changes to the OS are costly and may not
be backward-compatible. As a result, despite the poten-
tial for ACGs to solve many issues with permission models
in modern OSes, they are unlikely to be deployed in the
near future, if ever. Furthermore, even if ACGs were incor-
porated into an OS, old devices may never update to the
latest OS, and so these changes may never reach customers
(a situation notorious for the Android ecosystem [1]).

In contrast, a library paired with program analyses can be
deployed within any application and verified by any entity
with the ability to run the analysis tools. While we assume
that the app store takes on the role of analyst, this role
can also be filled by trusted third-party organizations (for
example, to produce a list of “ACG-certified” apps).

Flexibility of Permission Models. The application per-
mission model (manifest, prompts, user-driven access con-
trol, or some combination) is fixed within an OS. However,
permission models are not one-size-fits-all: Different models
may be better suited for different applications and different
resources [7]. A key benefit of a user space approach like
ours is that the permission model can be changed or com-
bined with other permission models. For example, in our
implementation, we extend Android with a user-driven ac-
cess control model, but still allow applications to use the
manifest model (subject to information flow guarantees).

5.2 Opportunities for Limited OS Support
Through our design and implementation experience, we

identify simple, broadly useful features that OSes can (and
may already) provide to enable user-driven access control to
be implemented easily and securely in user space. Note that
the features we describe here are generic, not ACG-specific.
We believe that these features are also useful beyond ACGs
(for example, to prevent a broader class of UI-level attacks
like clickjacking).

Event Analysis. If the OS prevented events from being
created or modified, we would not need to run an analysis
to detect illegal event flow. Alternatively, if the OS flagged
programmatic events as synthetic, we would be able to verify
event flow with minimal effort and performance overhead
at runtime. Unfortunately, Android does not distinguish
between forged events and real events that come from user
input, which forces us to make this distinction.4

Tapjacking. Detecting tapjacking attacks which occur out-
side of the application’s UI — for example, by another ap-
plication overlaying content on top of the target applica-
tion — requires some OS support. The reason for this is that
OSes typically do not allow applications to take system-level
screenshots, which is necessary for our bitmap inspection ap-
proach. (Allowing applications to take system-level screen-
shots poses a security risk, since it allows applications to
read content from other applications.)

Instead, our implementation relies on Android’s FLAG_

WINDOW_IS_OBSCURED flag (modulo its incorrect handling of
partially obscured UIs, discussed in Section 4.4). Without
this limited support, it would have been difficult or impos-
sible to detect application-external UI attacks.

Bait-and-Switch. With full OS support, we could deter
bait-and-switch attacks without relying on random checks.
We could instead depend on a secure layer at the OS level
which alerts us when the UI changes, but is not susceptible
to modification or interception by applications.

5.3 Limitations of a User Space Approach
Finally, we identify several fundamental limitations of sup-

porting user-driven access control without OS support.

Increased Trusted Code Base. We must now trust not
only the OS and the device, but also our library, the analysis
tools, and the verification model those tools depend on.

Software Updates. If the ACG library is updated, each
application developer must individually update their ap-
plication to include the latest version of the library. By
contrast, OS updates (though they may be slow to propa-
gate [1]) are applied centrally.

Inconsistent Permission Models. In some cases, flexi-
ble permission models may lead to inconsistent permission
models. For example, as of Android 6.0, sensitive permis-
sion requests generate permission prompts on first use. If
an application accesses that permission through an ACG,
this prompt will seem redundant to users (and will be re-
dundant, from a security perspective). Without modifying
the OS, however, these prompts cannot be removed even in
cases where permission is already granted through an ACG.

4Android events do contain a flag called FLAG_TAINTED for
when the event is inconsistent with previous events. How-
ever, the methods to access it are hidden, it is not docu-
mented, and we never see it set in any of our attacks.

Application Limitations. Finally, our design and im-
plementation place certain limitations on applications. For
example, since unrestricted use of reflection allows an ap-
plication to circumvent any secure library, we require that
developers who use reflection annotate their applications ac-
cordingly and that a human verifier inspects any usages of
reflection. Though alternate static analysis approaches may
remove such restrictions, approaches without OS support
are more likely to encounter such challenges.

6. EVALUATIONS
We show that it is feasible to integrate our implementation

with real applications. We also test it on malicious code
and show that it prevents attacks in the scope of our threat
model. We evaluate the performance impacts of different
random check frequencies. Finally, we evaluate how often
applications create and modify events in practice.

6.1 Aiding Good: Porting Applications
We integrate AUDACIOUS into existing applications to

evaluate the development impact. We find the following:

• Some applications have ACG-like UI elements. In these
applications, integrating ACGs decreases code size.

• In applications that do not have ACG-like UI elements,
integrating ACGs only slightly increases code size.

• Flexibility of permission models is desirable. All of the
applications that we evaluate have permission uses for
which ACGs may not be ideal.

• Applications benefit from increased customization of
and interaction with ACGs. A software-based approach
should consider this in its design.

• A proactive developer can decrease the burden of in-
formation flow analysis by following best practices.

6.1.1 Applications
We build AUDACIOUS into five open-source applications

from the F-Droid repository.5 We summarize these applica-
tions in Table 3. We select these applications for non-trivial
uses of permissions and for varying complexity. Simple ap-
plications have little advanced functionality; more complex
applications may have complicated permissions uses or pass
information through Intents.

6.1.2 Development Impact
We evaluate the impact of integrating AUDACIOUS in

three places: the library, the event analysis, and the informa-
tion flow analysis. We count Java LOC using SLOCCount.6

We summarize our results in Tables 4 and 5.

ACG Library. Integrating the library requires few code
changes. Three of the five applications already include un-
verified UI elements that behave like ACGs. For example,
Speed of Sound has a toggle button to start and stop lo-
cation tracking; this functions like the UpdateLocationACG.
Integrating the library into these applications decreases code
size. Two applications do not have ACG-like UI elements.
For example, Solar Compass accesses location automatically
when the application starts. Integrating the library into
these applications only slightly increases code size.

5https://f-droid.org/
6http://www.dwheeler.com/sloccount/

Event Analysis. The event analysis takes at most 24 sec-
onds and reports no false positives in four out of five applica-
tions. It reports two false positives in the rotateTouchEvent
method of a map class in a dependency of WikiJourney. This
method determines the orientation of the map and rotates
events accordingly. This is not malicious behavior; the hu-
man verifier can check this in the approval stage.

Information Flow. Annotation burden is low for simple
applications and higher for more complex applications. The
flow for Pinpoi is especially complex, as it allows users to
import points of interest from many different data sources
and uses Intents heavily. We use a tool in SPARTA to au-
tomatically infer annotations for Pinpoi. This tool infers
487 annotations; we correct incorrect annotations and add
missing annotations. We expect that this increases our an-
notation count. Overall, the developer understands the code
best and so is in the best position to decrease this burden.

SPARTA takes at most 96 seconds and reports no errors
for three of the annotated applications. It reports one error
in Speed of Sound and 21 errors in Pinpoi. These are the
results of illegal flows. For example, Speed of Sound over-
rides toString() and leaks sensitive information from Blue-
tooth (BLUETOOTH → ANY). Pinpoi catches and prop-
agates runtime exceptions (ANY → ANY). Neither appli-
cations use these flows maliciously; this is human-verifiable.
Nonetheless, SPARTA reports errors to prevent these be-
haviors. A proactive developer can decrease the number of
false-positives by following best practices (for example, by
only leaking sensitive information in sensitive methods, or
by using checked exceptions).

6.1.3 Lessons and Observations

ACGs encapsulate existing behavior. When applica-
tions already have ACG-like UI elements, integrating the
library is simply a matter of swapping those elements with
ACGs, which decreases code size. However, even when ap-
plications do not have ACG-like UI elements, integrating
the library only slightly increases code size. That is, even
though we must add new user interaction, we may remove
some of the resource-accessing code. Overall, we find that
ACGs act not only as a security guarantee for the user, but
also as a reusable component for the developer.

Flexibility of permission models is desirable. All five
applications have permission uses for which user-driven ac-
cess control may not be ideal. Consider Speed of Sound:
The application saves songs to a database while the user is
driving, but the user cannot interact with the application
at that time. We can require the user to give permission
to save songs before beginning a route or upon finishing a
route. However, this may impose an unwanted burden on
the user. This supports the claim that ACGs alone do not
fully represent all modes of interaction with resources [7].
Furthermore, in practice, it may not be feasible to enumer-
ate all possible uses of ACGs. We can avoid these problems
by allowing applications to use alternative permission mod-
els for functionalities for which user-driven access control is
not ideal.

Applications benefit from increased customization
of and interaction with ACGs. The original model for
ACGs [24] introduces three types of ACGs: one-time, ses-

Application Purpose Complexity Resources ACG Integrated

VoiceRecorder Record and save audio Simple Audio, filesystem RecordAudioACG

Solar Compass Show position of sun relative to location Simple Location LocationACG

Speed of Sound Adjust volume based on driving speed Complex Bluetooth, location, internet UpdateLocationACG

Pinpoi Manage points of interest Complex Location, internet, filesystem UpdateLocationACG

WikiJourney Show Wikipedia articles for nearby locations Moderate Location, internet, filesystem UpdateLocationACG

Table 3: Summary of applications.

VoiceRecorder Solar Compass Speed of Sound Pinpoi WikiJourney

Original Layout 52 224 338 586 458

Original Java 139 308 1774 3897 1283

Layout Changes 21 7 3 17 7

Java Changes, ACGs -50 9 -71 -16 28

Java Changes, SPARTA 3 7 79 129 41

SPARTA Annotations, manual 3 14 149 224 178

SPARTA Annotations, automatic 0 0 0 487 0

Table 4: Code changes to integrate ACGs.

sion, and permanent. This continues to adequately model
ACG use in applications. However, applications depend on
further customization and interaction. A software-based
design should consider these use cases. Paradigms we en-
counter include the following:

1. Configuration: Applications pass configuration op-
tions to Android resource APIs. For example, VoiceRe-
corder configures the audio recording API to customize
the audio output format.

2. Communication: Applications need to know not only
when the resource is available, but also when the user
interacts with the ACG in other ways. For example,
VoiceRecorder starts and stops a timer that displays
the duration of the recording, so it needs to react when
the user presses the “record” button.

3. Updates: Applications request periodic updates from
resource APIs. Three out of the five applications that
we evaluate ask for location updates when the user’s lo-
cation changes by some amount or when some amount
of time passes. This appears to be a common mode of
interaction for location access.

6.2 Fighting Evil: Security Analysis
We instantiate the classes of attacks we outline in Sec-

tion 3 and test that our tool defends against them. We are
unaware of available open-source malware for these attacks,
so we create our own testing framework for generating ap-
plication variants. We implement 57 attacks in EvilApp, a
test application. AUDACIOUS prevents 55 of these. The
two that it does not prevent are limited by lack of OS sup-
port. We revisit these attacks and detail the point at which
AUDACIOUS prevents them.

UI modification attacks change the ACG UI after cre-
ation to trick the user into interacting with the ACG. Li-
brary design decisions prevent these attacks: The attacks
compile, but have no effect on the UI.

Event forgery attacks create or modify events, or call
methods like performClick(). Some of these try to trick
the analysis by obfuscating the event flow. The static event
analysis catches all of these attacks.

Cover attacks add application-level elements that overlap
with the ACG UI. The bitmap check stage of the dynamic
UI context check catches these.

Tapjacking attacks use system-level pop-up notifications
(Toasts) to cover the ACG UI and trick the user. The dy-
namic UI context check catches all but one of these. AUDA-
CIOUS does not catch the attack that partially obscures the
ACG UI because of the bug we have reported to Android.

Replay attacks capture events from the location of the
ACG and schedule them for a later point in time. The UI
at the time of the original event may or may not match
the ACG UI. The UI consistency stage of our dynamic UI
context check catches these.

Bait-and-switch attacks cover the ACG UI and then, at
the last minute, put the ACG UI on top so that at the time
of the UI check, the UI looks authentic. The random bitmap
check stage of the dynamic UI context check catches all but
one of these. AUDACIOUS does not catch the attack that
uses a Toast to do this, since there is no way to check the
obscured flag during a random check.

Resource flow attacks circumvent the library: They call
resource-accessing APIs directly, access resources that are
different from the ones that users expect, or expose their
own buttons and directly access resources in response to
them. AUDACIOUS catches these attacks statically using
SPARTA, as all of them expose invalid flows.

6.3 Random Check Frequency
AUDACIOUS uses random checks to guarantee that the

user has enough time to perceive the UI before interacting
with an ACG. Smaller frequencies for random checks provide
better protection against timing-based attacks. However,
frequent random checks add performance overhead. A more
sensitive ACG (for example, an ACG that handles payment
methods) may wish to use a smaller frequency at some cost
to performance.

We evaluate the performance impact on the UI of different
validation frequencies on Solar Compass. Over 40 seconds,
we toggle the LocationACG button 30 times. We compute
the total time from the beginning of the first event to the

VoiceRecorder Solar Compass Speed of Sound Pinpoi WikiJourney

SPARTA Warnings 2 1 8 26 17

SPARTA Errors 0 0 1 21 0

Event Analysis Errors 0 0 0 0 2

SPARTA Time (s) 46 55 77 96 66

Event Analysis Time (s) 5 9 7 9 24

Table 5: Static analysis performance.

0 800 1,600 2,400 3,200 4,000
300

400

500

600

700

Maximum Random Check Frequency (ms)

E
v
en

t
D

u
ra

ti
o
n

(m
s)

Random Checks

No Random Checks

Figure 7: UI performance of Solar Compass. At
400 milliseconds, checks and events coincide so fre-
quently that performance is significantly impaired.
At 4000 milliseconds, checks and events rarely coin-
cide, so there is minimal impact on performance.

end of UI rendering for each toggle action for maximum
frequencies ranging from 400 milliseconds to 4000 millisec-
onds. Note that these frequencies are maxima: At 400 mil-
liseconds, the random check occurs at a frequency randomly
distributed between 0 milliseconds and 400 milliseconds (on
average, 200 milliseconds). We compare this to a control
version of Solar Compass with random checks disabled. We
compare the results in Figure 7.

Overall, we find that the checks are only harmful to UI
performance when they occur at the same time as user in-
teraction. This causes a delay in processing the event and
rendering the UI. This happens more often for small frequen-
cies, which results in a larger variance of event times and a
larger mean. This becomes less likely as the frequency in-
creases, leading to better performance for larger frequencies.

6.4 Event Forgery in Real Applications
Applications sometimes create or modify events or clicks

for the sake of UI customization or upscaling. We run our
event analysis on the top 100 free applications in the Android
application store to determine how often this happens.

In total, our analysis finds 1060 errors across 88 of the top
100 applications (10.6 on average). Of these, 218 are from
advertisement libraries or their dependencies. Most errors
in these libraries appear related to unskippable video adver-
tisements and interstitial advertisements which may violate
user expectations. These errors require manual inspection.
We expect non-free applications to have fewer instances of
event and click forgery due to the lack of advertisements.

7. RELATED WORK
Prior work documents the shortcoming of permission mod-

els, particularly for Android [4, 8, 24, 31]. Our work builds
on the notions of user-driven access control and ACGs, in-
troduced by those names by Roesner et al. [24] but more
generally dating back to concepts like the powerbox [17, 27]
for secure file picking. ACGs for Android are supported by
LayerCake [23], requiring significant modifications to An-
droid. In contrast, AUDACIOUS securely supports ACGs
for unmodified OSes.

Overhaul [18], like AUDACIOUS, addresses the difficulty
of deploying user-driven access control and implements a
variant into existing OSes retroactively. Other works ex-
plore ideas similar to user-driven access control, including
Gyrus [13], AppIntent [33], and the EROS Trusted Window
System [26].

Felt et al. [7] argue that secure UIs should be combined
with other permission granting approaches depending on the
permission type. In that spirit, by combining ACGs with
information flow, AUDACIOUS supports both user-driven
access control and install-time manifests for flows that are
not well-suited for ACGs in a particular app’s context.

Recent work addresses unwanted resource flow in Android.
SPARTA [5], which AUDACIOUS leverages, statically ver-
ifies that applications use only those information flows de-
clared by the developer in a policy file. TaintDroid [4] dy-
namically tracks information flows in Android. AppFence [9]
utilizes TaintDroid to introduce privacy controls that allow
users to withhold data from applications and prohibit select
resources from flowing to the network. These tools provide
no guarantees that applications access the correct resources
at the correct times based on user interaction.

ClickRelease [16] uses symbolic execution to verify policies
that constrain the usage of resources based on user interac-
tion with the application. Rubin et al. [25] statically detect
covert communication in Android applications. Unlike AU-
DACIOUS, these works do not enforce any guarantees on
the appearance of the UI at the time of user interaction.

AsDroid [11] detects stealthy resource access by using pro-
gram and text analysis to determine whether program be-
havior matches the user’s expectations. Though similar in
spirit, AsDroid handles only a subset of the issues AUDA-
CIOUS does. Our techniques to handle dynamic UIs and
programmatic clicks could be applied to improve AsDroid.

Jekyll on iOS [29] details attacks that pass application
approval, but introduce illegal information flows after in-
stallation. These attacks rely on violations of memory and
type safety (buffer overflows and incorrect type casts) for
which we are unaware of attacks in Java’s managed environ-
ment. As AUDACIOUS does not support native code, these
attacks are not relevant to AUDACIOUS.

Other relevant works include SUPOR [10], which stati-
cally detects leakage of sensitive user inputs; AutoCog [22]
and WHYPER [20], which assess permission-to-description
fidelity; and Quire [3], which dynamically provides prove-
nance for on-device IPCs. Many other works have also used
program analysis to detect malicious behaviors in Android
applications (e.g., [30, 32, 34]).

8. CONCLUSIONS AND FUTURE WORK
Previous work on user-driven access control relies on ma-

jor OS modifications. This is a barrier to its deployability.
We design a system for user-driven access control without
modifying the OS. Our design combines a secure library with
program analysis to ensure that applications use ACGs cor-
rectly. Our approach enables applications to combine user-
driven access control with other access control models. We
demonstrate that this approach can handle most classes of
attacks with no OS support. Still, we find that limited OS
support is particularly beneficial in preventing some attacks.

We implement our design in Android and integrate it with
existing applications. In doing so, we identify techniques to
minimize the analysis burden for developers as well as design
considerations for future libraries. Our evaluation shows
that many applications already use ACG-like UI elements,
and that for those applications, integrating the library ac-
tually decreases code size. Furthermore, even the simplest
applications benefit from flexible permission models.

Future Work. Future work may assess acceptability of
a UI transformation statically; this would benefit existing
works that rely on manual image comparison [9, 25]. A large-
scale evaluation of the ways in which applications interact
with resource APIs and ACG-like UI elements may better
inform future design decisions. In future design, rather than
rely on a secure library, we may provide developers with the
option to mark existing UI elements and verify their behav-
iors. Future work applying our design to desktop OSes may
need to consider that random checks are insufficient for some
attacks involving mouse pointers [12]. A future implemen-
tation may repurpose FlowTwist [15], a static taint analysis
for Java, as an alternate to the conservative event analy-
sis; the primary barrier is in getting it to work with recent
Android APIs. A future implementation may extend ACGs
and the event analysis to cover accessibility and voice inter-
actions; the use of Fragments makes this possible with few
changes. Finally, we leave securely relaxing the restrictions
AUDACIOUS places on ACG UIs to future work.

9. ACKNOWLEDGEMENTS
We thank Michael Ernst and Suzanne Millstein for help in-

tegrating SPARTA into AUDACIOUS. We thank Julia Ru-
bin, Kris Micinski, and Zach Tatlock for the stimulating
discussions about acceptable UI transformations. We thank
all of the students in the UW PLSE and Security labs who
provided feedback on early revisions.

References
[1] Android. Dashboards. http:

//developer.android.com/about/dashboards/index.html,
2016. Accessed: 2016-05-03.

[2] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl,
M. d’Amorim, and M. D. Ernst. Static analysis of implicit
control flow: Resolving Java reflection and Android intents.

In 30th International Conference on Automated Software
Engineering, 2015.

[3] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight provenance for smart phone
operating systems. In 20th USENIX Conference on
Security, 2011.

[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In 9th USENIX Conference on
Operating Systems Design and Implementation, 2010.

[5] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner,
F. Roesner, K. Koscher, P. B. Barros, R. Bhoraskar,
S. Han, P. Vines, and E. X. Wu. Collaborative verification
of information flow for a high-assurance app store. In ACM
Conference on Computer and Communications Security,
2014.

[6] Federal Trade Commission. Android flashlight app
developer settles FTC charges it deceived consumers, Dec.
2013.
https://www.ftc.gov/news-events/press-releases/2013/12/
android-flashlight-app-developer-settles-ftc-charges-it-deceived.

[7] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and
D. Wagner. How to ask for permission. In 7th USENIX
Workshop on Hot Topics in Security, 2012.

[8] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android Permissions: User Attentions,
Comprehension, and Behavior. In Symposium on Usable
Privacy and Security, 2012.

[9] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. “These aren’t the droids you’re looking for:”
retrofitting Android to protect data from imperious
applications. In ACM Conference on Computer and
Communications Security, 2011.

[10] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and
G. Jiang. Supor: Precise and scalable sensitive user input
detection for Android apps. In 24th USENIX Security
Symposium, 2015.

[11] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang.
Asdroid: Detecting stealthy behaviors in android
applications by user interface and program behavior
contradiction. In 36th International Conference on
Software Engineering, 2014.

[12] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and
C. Jackson. Clickjacking: Attacks and defenses. In 21st
USENIX Security Symposium, 2012.

[13] Y. Jang, S. P. Chung, B. D. Payne, and W. Lee. Gyrus: A
framework for user-intent monitoring of text-based
networked applications. In NDSS Symposium, 2014.

[14] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and
M. Peter. L4android: A generic operating system
framework for secure smartphones. In ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices,
2011.

[15] J. Lerch, B. Hermann, E. Bodden, and M. Mezini.
Flowtwist: Efficient context-sensitive inside-out taint
analysis for large codebases. In 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, 2014.

[16] K. K. Micinski, J. Fetter-Degges, J. Jeon, J. S. Foster, and
M. R. Clarkson. Checking interaction-based declassification
policies for android using symbolic execution. CoRR,
abs/1504.03711, 2015.

[17] M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control.
PhD thesis, Johns Hopkins Univ., Baltimore, MD, USA,
2006.

[18] K. Onarlioglu, W. Robertson, and E. Kirda. Overhaul:
Input-Driven Access Control for Better Privacy on
Traditional Operating Systems. In IEEE/IFIP

International Conference on Dependable Systems and
Networks (DSN), 2016.

[19] Panda Security. Tapjacking - when the danger camouflages
itself on google play.
http://www.pandasecurity.com/mediacenter/tips/13973/,
2015.

[20] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie.
Whyper: Towards automating risk assessment of mobile
applications. In 22nd USENIX Conference on Security,
2013.

[21] Y. Qiu. Tapjacking: An untapped threat in android. http:
//blog.trendmicro.com/trendlabs-security-intelligence/
tapjacking-an-untapped-threat-in-android/, 2012.

[22] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and
Z. Chen. Autocog: Measuring the description-to-permission
fidelity in android applications. In ACM Conference on
Computer and Communications Security, 2014.

[23] F. Roesner and T. Kohno. Securing Embedded User
Interfaces: Android and Beyond. In 22nd USENIX Security
Symposium, 2013.

[24] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang,
and C. Cowan. User-driven access control: Rethinking
permission granting in modern operating systems. In IEEE
Symposium on Security and Privacy, 2012.

[25] J. Rubin, M. I. Gordon, N. Nguyen, and M. Rinard. Covert
communication in mobile applications (t). In Proceedings of
the 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2015.

[26] J. S. Shapiro, J. Vanderburgh, E. Northup, and
D. Chizmadia. Design of the EROS Trusted Window
System. In USENIX Security Symposium, 2004.

[27] M. Stiegler, A. H. Karp, K.-P. Yee, T. Close, and M. S.
Miller. Polaris: Virus-Safe Computing for Windows XP.
Communications of the ACM, 49:83–88, Sept. 2006.

[28] H. J. Wang, A. Moshchuk, and A. Bush. Convergence of
Desktop and Web Applications on a Multi-Service OS. In
USENIX Workshop on Hot Topics in Security, 2009.

[29] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll on
ios: When benign apps become evil. In 22nd USENIX
Conference on Security, 2013.

[30] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A precise
and general inter-component data flow analysis framework
for security vetting of android apps. In ACM Conference
on Computer and Communications Security, 2014.

[31] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov. Android permissions
remystified: A field study on contextual integrity. In 24th
USENIX Security Symposium, 2015.

[32] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck.
Appcontext: Differentiating malicious and benign mobile
app behaviors using context. In 37th International
Conference on Software Engineering, 2015.

[33] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang. Appintent: Analyzing sensitive data transmission in
android for privacy leakage detection. In ACM Conference
on Computer and Communications Security, 2013.

[34] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware
android malware classification using weighted contextual
api dependency graphs. In ACM Conference on Computer
and Communications Security, 2014.

[35] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In IEEE Symposium on
Security and Privacy, 2012.

