
91

A Solver-Aided Language for Test Input Generation

TALIA RINGER, University of Washington, USA

DAN GROSSMAN, University of Washington, USA

DANIEL SCHWARTZ-NARBONNE, Amazon, USA

SERDAR TASIRAN, Amazon, USA

Developing a small but useful set of inputs for tests is challenging. We show that a domain-specific language

backed by a constraint solver can help the programmer with this process. The solver can generate a set of test

inputs and guarantee that each input is different from other inputs in a way that is useful for testing.

This paper presents Iorek: a tool that empowers the programmer with the ability to express to any SMT

solver what it means for inputs to be different. The core of Iorek is a rich language for constraining the set of

inputs, which includes a novel bounded enumeration mechanism that makes it easy to define and encode a

flexible notion of difference over a recursive structure. We demonstrate the flexibility of this mechanism for

generating strings.

We use Iorek to test real services and find that it is effective at finding bugs. We also build Iorek into a

random testing tool and show that it increases coverage.

CCS Concepts: • Software and its engineering → Domain specific languages; Software testing and
debugging; Constraints;

Additional Key Words and Phrases: solver-aided languages, test input generation, generators

ACM Reference Format:
Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran. 2017. A Solver-Aided Language

for Test Input Generation. Proc. ACM Program. Lang. 1, OOPSLA, Article 91 (October 2017), 25 pages. https:
//doi.org/10.1145/3133915

1 INTRODUCTION
Coming up with an interesting set of test inputs for a software service is a time-consuming, tedious,

and error-prone task. This is precisely the kind of task that constraint solvers are ideal for. In the

case of testing, solvers can generate a set of test inputs for some code and guarantee that each

input is both a legal input according to a specification and different from other inputs in a way that

is useful for testing.

Consider, for example, the purchasing workflow for a retail website. The API for this code

specifies legal inputs: Items have names, categories, and prices. A programmer who is testing this

code likely does not want to test every single item—there may be hundreds of millions of items.

The programmer can instead specify what it means for two items to be different for the sake of

testing: Two items may be different if they are in different categories (say, Music and Shoes) or have

prices at least $50 apart. A constraint solver can guarantee that every individual item it generates

for this test has a name, category, and price, and that every pair of items are in different categories

or have prices at least $50 apart.

Authors’ addresses: Talia Ringer, University of Washington, USA; Dan Grossman, University of Washington, USA; Daniel

Schwartz-Narbonne, Amazon, USA; Serdar Tasiran, Amazon, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

2475-1421/2017/10-ART91

https://doi.org/10.1145/3133915

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

https://doi.org/10.1145/3133915
https://doi.org/10.1145/3133915
https://doi.org/10.1145/3133915

91:2 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

Our tool Iorek (pronounced your-ik) helps programmers express this. Iorek combines a testing

framework with a domain-specific language backed by a constraint solver—a solver-aided lan-
guage [Torlak and Bodik 2013]. A Iorek programmer writes an incomplete test and leaves some

inputs blank. For every blank input, Iorek generates many inputs that satisfy a specification and

are different in the way the programmer defines.

Iorek exposes a constraint language to express what it means for any two inputs to be different.

In this way, Iorek empowers the programmer with control over the space of inputs. The con-

straint language can express relations (for example, strings of different lengths, or numbers at

a certain distance), combinations of constraints, and a novel bounded enumeration mechanism.

The enumeration mechanism makes it possible to express the notion of a representative set of
values for a recursive structure over an infinite domain and encode it for any SMT solver. This

enables programmers to define expressive combinations of constraints over structured data. It also

provides a level of abstraction: Programmers can leave reasoning about SMT-supported datatypes

like numbers and strings to the solver.

We demonstrate the power and flexibility of the enumeration mechanism in generating string

inputs. To accomplish this, we extend Rosette [Torlak and Bodik 2013] with strings and regular

expressions (regexes), which are recent additions to SMT [Bjørner et al. 2012; Liang et al. 2014;

Trinh et al. 2014; Uhler and Dave 2013; Zheng et al. 2013]. For example, our evaluation suggests

that using the structure of a regex to define inputs can sometimes increase code coverage. That

is, a programmer generating three tests with inputs constrained by [a-z]+|[0-9]+|_ may prefer

"abc", "1234", and "_" over "123", "4567", and "89012". The enumeration mechanism makes

it easy to express this to a solver. The use of an SMT solver allows programmers to combine

this mechanism with other notions of difference (such as strings of different lengths) and leave

reasoning about strings to the solver.

We show that Iorek is effective at finding bugs, increases code coverage, and scales to complex

queries: We integrate a protoype into a framework at Amazon and use it to find four bugs in

real services in development—developers have accepted three of these bugs.
1
We also use Iorek

to generate inputs for the fully-automatic testing tool Randoop [Pacheco and Ernst 2007] and

find that the inputs Iorek generates increase code coverage on 15 of 18 benchmarks in a string

benchmark suite. Finally, we show that compared to three alternative ways of querying a solver for

many different values, the approach that Iorek uses is the only approach that leads to acceptable

performance across all the kinds of queries Iorek makes.

In summary, we contribute the following:

(1) We design and implement Iorek: a solver-aided language and tool for generating test inputs

that lets programmers define what makes test inputs different.
(2) We introduce a novel bounded enumeration mechanism that generates a representative set

of values and formulate a way to express this mechanism to a solver. We demonstrate the

power and flexibility of this mechanism in the domain of strings.

(3) We build a prototype of Iorek into a testing framework at Amazon and use it to find bugs in

real services in development.

(4) We use Iorek to generate inputs for an automatic testing tool and show that it increases code

coverage and that the flexibility it provides is useful.

(5) We evaluate the performance of different mechanisms for querying a solver for many different

values and show that Iorek scales to large and complex queries.

1
The other does not cause unexpected behavior for Amazon customers.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:3

Fig. 1. Iorek JUnit framework

2 USING IOREK
The core of Iorek is a solver-aided intermediate representation (IR) that is designed to interface

easily with existing languages. This way, we can integrate Iorek with testing frameworks in many

different languages. So far, we have implemented an interface (Figure 1) that lets programmers

write Iorek tests in JUnit.

To see Iorek in action, consider the calendar service API specified in Figure 2. Every calendar

event has a name, which may end in a time string. The calendar can infer information about the

time of an event from its name. The calendar also interacts with a messaging system, and can

import and display flight information and adjust the time zone of events accordingly. That is, if

Alice flies to Vancouver at 10:00 AM on October 21st, it shows all of her events before 10:00 AM on

October 21st in her local time, but all events after the time of arrival in Pacific Daylight Time.

We want to make sure that the calendar still passes a sanity check when Alice is abroad: If Alice

creates two events, one that contains a time as the suffix of its name (for example, "meeting 7:00
PM" with an empty time field) and another that contains the same name and time as separate fields

("meeting" with the time field set to 7:00 PM that same day), the two events should be identical:

assertEquals(create(name + suffix, none), create(name, of(suffixTime)));

We would like to make sure that this works when Alice flies anywhere in the world. We do not

want to exhaustively test every event name and flight location (there are infinitely many event

names). Instead, we want to generate event names with times that exercise different branches in the

time string specification:

{{05:00}, {21:22}, {12:00 AM}, {5:00 PM}, ...}

And we want to pair each time with flight locations that are in different time zones:

{{05:00, Pittsburgh}, {05:00, Amsterdam}, {05:00, Vancouver}, ...}

We can write this test in the Iorek JUnit framework (Figure 1). We pass Iorek three things:

(1) The input specification (Figure 2), which describes legal service inputs (events).

(2) A number n (Figure 3) of test inputs to generate (in this case, 100).

(3) A test outline (Figure 3) that defines:
(a) a JUnit test with blank inputs, and

(b) what makes any two test inputs different.

The input specification for the service API from Figure 2 exists already, as is common in industry.

To write the test outline in Figure 3, we write a normal JUnit test, but in place of concrete times

and locations like "05:00" and "Pittsburgh", we write blank inputs: ?timeSuff and ?Location.
These are the blank inputs that Iorek generates 100 (the argument to @Generate) concrete inputs
for. We use these blank inputs to create two events, which we assert (using JUnit’s assertEquals)
are the same. We also define (using constrain) what makes any two times and locations different.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:4 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

"12h": {

"type": "Regex",

"pat": "(1[0-2]|[1-9]):[0-5]\d(\s)?(AM|PM)"

}

"24h": {

"type": "Regex",

"pat": "(([0-1]?\d)|2[0-3]):[0-5]\d"

}

"time": {"type": "Regex", "pat": "$12h|$24h"}

"timeSuff" : {"type": "Str", "pat": "$time?"}

"eventName": {

"name": {"type": "Str"},

"timeSuff": "timeSuff"

}

"Event": {

"eventName": "eventName",

"location": {"type": "Location"},

"startTime": {"type": "Date", "req": "false"},

"duration": {"type": "Integer", "minimum": 0}

}

Fig. 2. JSON specification for events in the cal-
endar service API in a format similar to Swag-
gera API framework specifications. An event has
a name, location, optional start time, and positive
duration. The name is a string that may end in a
time, which may be a 12 hour time or a 24 hour
time.

a
http://swagger.io/specification/

@RunWith(Iorek.class)

@Specification("calendar.json")

public class CalendarTests {

// ... other definitions omitted
private Event create(name, suff, loc, st, dur) {

EventName en = new EventName(name, suff);

return cut.create(new Event(en, loc, st, dur));

}

@Generate(100)

public void testSanity() {

Location loc = ?Location; // blank input
String suffix = ?timeSuff; // blank input

Iorek.constrain(suffix, Iorek.coverRegexp(time));

Iorek.constrain(loc, Iorek.differentTimeZones());

TimeZone zn = alice.getDefaultTimeZone();

Date flightT = new Date(2017, 10, 21, 10, 0, 0, zn);

Event flight = create("trip", loc, of(flightT), 10);

cut.setCurrentTime(flightT.plusHours(24));

Date evT = parse(time, loc.getTimeZone());

Event fst = create("meeting", suffix, loc, none, 1);

Event snd = create("meeting", "", loc, of(evT), 1);

assertEquals(fst, snd);

}

}

Fig. 3. Calendar service JUnit test outline, with lines that
are specific to Iorek highlighted. @Specification tells
Iorek where to find the input specification file from Fig-
ure 2. The ? syntax denotes the blank inputs (a built-
in Location and specification-defined timeSuff). The
constrain function tells Iorek what it means for each
generated input to be different.

We annotate the test outline with two top-level annotations: @Specification tells Iorek where

to find the specification file. @RunWith(Iorek.class) tells JUnit to run the outline with the Iorek

TestRunner.2 The TestRunner uses the specification file, number n, and test outline to run tests in

two passes:

(1) Prepare, which generates inputs.

(2) Run, which runs the outline with the generated inputs.

Prepare translates the specification from Figure 2 and the outline from Figure 3 into a Iorek

program (in fact, the one in Figure 8 in Section 4.2). It then runs the Iorek program (not the code
under test, or CUT), which queries a solver for 100 time-location pairs that satisfy the specification

from Figure 2 and are different in the way we specify in Figure 3. It saves the 100 time-location

pairs as an input file. Run invokes the test outline with the CUT 100 times (once with each input

from the input file), replacing every blank input with a generated input. Each run produces a result

(success or failure).

In this calendar example, we took a black-box view of testing, thinking about inputs rather than
properties of the CUT. We could just as well use specifications for properties of the CUT. Ultimately,

Iorek is agnostic to whether the approach is black-box or white-box. Iorek is a tool to express what

it means for test inputs to be different—it gives the programmer control of what “different” means.

2
http://junit.sourceforge.net/junit3.8.1/javadoc/junit/textui/TestRunner.html

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

http://swagger.io/specification/
http://junit.sourceforge.net/junit3.8.1/javadoc/junit/textui/TestRunner.html

A Solver-Aided Language for Test Input Generation 91:5

3 OUR CONSTRAINT PROBLEM, CONTRASTED
We formulate test input generation as a constraint solving problem: A solver-aided testing tool

generatesmany different satisfying assignments (a set of inputs) for a specification. This means that

every individual input should satisfy the specification and every pair of inputs should be different.

That is, for some set of values v1, . . . ,vn , some assertion A about each individual value, and some

constraint C relating values:

∀1 ≤ i ≤ n,A(vi) ∧ ∀1 ≤ j ≤ n, (i , j ⇒ C (vi ,vj))

This problem is different from the problem traditional synthesis [Solar Lezama 2008] and an-

gelic execution [Bodik et al. 2010] tools solve. These tools find a single satisfying assignment—a

program that is correct for all inputs. We use an interface that is inspired by the synthesis tool

SKETCH [Solar Lezama 2008] because it is clean and simple to use.

Some solver-aided languages such as Kaplan [Köksal et al. 2012] can enumerate all satisfying
assignments to a specification. Bounded exhaustive testing (BET) tools [Daniel et al. 2007; Goode-

nough and Gerhart 1975; Khurshid and Marinov 2004; Rosner et al. 2014; Senni and Fioravanti 2012]

generate all structures up to a bound. Relational logic solvers such as Kodkod [Torlak and Jackson

2007] are useful for this style of testing. While Iorek can express BET, it is not our goal—many

inputs will be redundant. We expose a newmechanism for enumeration that allows the programmer

to define what it means for structures to be different. This is similar to what SciFe [Kuraj et al.

2015] accomplishes, except we can express our enumerators to any SMT solver. This means that

we can use established solvers, abstract away reasoning about data, and support constraints on

strings (which most similar tools do not support).

Iorek is a tool to help programmers write tests, not a fully-automatic test generation tool. The core

of Iorek is a DSL for controlling input generation. In this regard, it is similar to QuickCheck [Claessen

and Hughes 2000], a widely used DSL for property-based testing. QuickCheck programmers guide

the search process for test inputs by writing constructive generators [Claessen and Hughes 2000;

Kuraj et al. 2015] which assign weights to all of the possibilities of the input space; these generators

are probabilistic. The DSL Luck [Lampropoulos et al. 2017] makes it easier to write this style of

generator. Iorek exposes constraints to specify what makes inputs different—these constraints

are not probabilistic, and can be used structurally to limit the search space like constructive

generators, but are concise like declarative generators [Boyapati et al. 2002; Senni and Fioravanti

2012]. Furthermore, Iorek queries existing SMT solvers, which abstracts details of SMT-supported

datatypes and frees the developer to focus on structural ways to constrain those datatypes, or on

the high-level structure of datatypes in which they are embedded.

Some random testing tools such as Randoop [Pacheco and Ernst 2007] use feedback from

executing tests to rule out redundant inputs. Many tools [Anand et al. 2007; Cadar et al. 2006;

Chipounov et al. 2011; Fraser and Arcuri 2011; Godefroid et al. 2005; Sen et al. 2005; Tillmann

and De Halleux 2008] combine symbolic execution with automatic testing techniques to produce

useful tests that explore different paths. Iorek is close in spirit to Grammar-Based Whitebox

Fuzzing [Godefroid et al. 2008], which uses grammar-based specifications to generate interesting

inputs that trigger invalid program states. Unlike these tools, Iorek gives the programmer control

over what it means to generate an interesting set of inputs, and is thus agnostic to whether the

approach is black-box or white-box. Iorek also provides a way for programmers to generalize

existing test suites to create better tests.

Iorek is ultimately a tool for writing better and more expressive tests and can be used alongside

fuzzing and testing tools. We demonstrate the use of Iorek with Randoop in Section 7. We discuss

more related work in Section 9.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:6 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

envempty
def
=

(∅, λ (M).#t, λ (Mx ,My).#f)

V : var→ val

A : Model→ boolean

C : (Model, Model)→ boolean

Model : symbolic→ concrete

Fig. 4. Environment (V , A, C)

(define trueA (λ (M) #t))

(define never (λ (M1 M2) #f))

(define (++ V1 V2)
(λ (v)
(if (v ∈ V)
V[v]
(env-V en)[v])))

(define (∧ A1 A2)
(λ (M)
(and (A1 M)

(A2 M))))

(define (∨ C1 C2)
(λ (M1 M2)
(or (C1 M1 M2)

(C2 M1 M2))))

Fig. 5. Algebraic identities and lifted operators

4 IOREK DESIGN AND IMPLEMENTATION
Iorek allows programmers to specify not only properties about individual inputs, but also properties

about the space of generated inputs. Iorek encodes this information for a solver and ensures that

all sets of inputs returned by the solver are different in the specified way.

Iorek includes an IR for generating inputs (described in Section 4.1 and formalized in Section 4.2),

an embedded language of built-in constraints on the space of inputs (Section 4.3), and combinators

to define new expressive constraints (Section 4.4), including a novel combinator for enumeration

(Section 4.5).

4.1 The Iorek IR
The Iorek language centers around the notion of a model. A model maps symbolic values (as in
some integer v) to concrete values (as in the integer 3). The Iorek environment (Figure 4) is a triple

(V ,A,C). V maps variables to (possibly symbolic) values. A is an assertion about each individual
model. C is a constraint that relates every pair of models.

The Iorek IR is implemented as a deep embedding in Rosette [Torlak and Bodik 2013]. Rosette

extends Racket with symbolic values that can be used interchangeably with concrete values. For

example, in Rosette a programmer can add a symbolic integer v to the concrete integer 3. Iorek
uses Rosette’s angelic execution primitives (to find some v for which an assertion holds).

We use the syntaxM[v] and (evaluate v model) (the latter from Rosette) to denote the value

of v in the model M when v is symbolic, and v itself when v is concrete. For convenience, we

define algebraic identities trueA for assertions and never for constraints (Figure 5). We define ++ to

combine variable maps, and we lift ∨, ∧, and ¬ to work with assertions and constraints. Figure 5

shows ∧ for assertions and ∨ for constraints; the rest are analogous.

In an environment (V ,A,C), a Iorek test outline evaluates to a set of models {M1, . . . ,Mn } that

satisfies the environment (when possible): The assertion A holds for every individual model, and

the constraint C holds for every pair of models. When n is the size of the model space and C is

inequality, this evaluates to the set of all models satisfying A, and is deterministic. Otherwise,

{M1, . . . ,Mn } can be any set of satisfying models in any order. Figure 6 formalizes this satisfiability

criteria. Figure 7 implements the criteria in a loop, generating results over a sequence of queries.

The key insight to the generation loop is that while a constraint maps (Model ,Model) → boolean,
we can also think of it in its curried form, Model → Model → boolean. Any constraint holds

vacuously with one model. For each subsequent model, we can encode the requirement that the

model is different from all previous models as aModel → boolean—in other words, an assertion.

The generation loop (Figure 7) implements this: It curries the constraint in the environment with

each model it receives from the solver and asserts that the next model should be different. These

assertions accumulate into a single assertion that consists of a linear number of constraints on the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:7

default (V ,Mx ,My)
def
=

∃v ∈ range(V),Mx [v] , My [v]

models(M1, . . . ,Mn,V ,A) def=

∀1 ≤ i ≤ n,

(dom(Mi) ⊆ range(V)) ∧ A(Mi)

different (M1, . . . ,Mn,V ,C)
def
=

∀1 ≤ i, j ≤ n, i , j ⇒

default (V ,Mi ,Mj)∧

((C = never) ∨C (Mi ,Mj))

M1, . . . ,Mn |= (V ,A,C)
def
=

models(M1, . . . ,Mn,V ,A)∧

different (M1, . . . ,Mn,V ,C)

Fig. 6. The satisfiability criteria, which
checks that all assertions in an environment
hold for each individual model, and that all
constraints hold for every pair of models.
The default criteria ensures no two models
are the same, even when the programmer
does not define C .

(define (extend-A en A)
(env (env-V en) (∧ A (env-A en)) (env-C en)))

(define (find-model en)
(coerce (solve (env-a en)) (env-v en)))

(define (next-different en)
(define V (env-V en))
(define C (env-C en))
(if (eq? C never) (default V) (∧ (default V) C)))

(define (gen n en)
(match n
[0 {}]
[_
(define M (find-model en))
(define Anext (curry (next-different en) M))
(⊎ {M} (gen (- n 1) (extend-A en Anext)))]))

Fig. 7. Pseudocode for Iorek’s generation loop, which imple-
ments the satisfiability criteria from Figure 6. The loop finds a
model for the assertion in the environment, making sure (via
coerce) that every symbolic value in the model maps to some
concrete value. It then adds an assertion that the next model
should be different (defaulting to the default constraint de-
fined in Figure 6).

model with respect to n for any given query, yet guarantees that all generated models are different.

This loop is built to be efficient and generalizable. There are many alternative ways to express this

notion of difference between all models to a solver; we evaluate them in Section 8.

4.2 Syntax and Semantics
Figure 8 shows an example Iorek program, and Figures 9 and 10 show the grammar and semantics.

A program is a sequence of global statements ⟨e⟩* (which typically correspond to a service specifi-

cation) followed by ⟨model-gen⟩s (which correspond to individual test outlines to generate values

for). Iorek ⟨val⟩s are values (for example, strings, lists, and objects), which for now come from Java

values.

Both ⟨a⟩ and ⟨c⟩ evaluate in embedded languages (⇓a and ⇓c). Primitive assertions ⟨p-a⟩ and
primitive constraints ⟨p-c⟩ map ⟨val⟩ to assertions ⟨A⟩ and constraints ⟨C⟩, respectively. That is, if
⟨p-a⟩ is (λ (h) (λ (M) (≥ M[h] 0)))), passing numHours returns (λ (M) (≥ M[numHours] 0)), an

assertion ⟨A⟩ that numHours is non-negative. We introduce the notation a(val) and c (val) to denote

this.

The embedded language for assertions and the primitive assertions currently come from the

specification language for an existing framework in use at the company Amazon. We extend the

language so that developers can express additional properties. We discuss the embedded language

for constraints ⟨c⟩ and some primitive constraints ⟨p-c⟩ in Section 4.3. Both embedded languages

can add to the environment: The embedded assertion language can add variables to V , and the

embedded constraint language can add both variables to V and assertions to A. This is necessary
for the powerful enumeration construct we define in Sections 4.4 and 4.5.

There are three commands that affect the environment: The declare command defines a ⟨var⟩
(Racket symbol) and maps it to a ⟨val⟩ inV . The specify command evaluates an assertion ⟨a⟩ about

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:8 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

(program calendarTests

(declare 12hr "(1[0-2]|[1-9]):[0-5]\d(\s)?(AM|PM)")

(declare 24hr "(([0-1]?\d)|2[0-3]):[0-5]\d")

(declare time (re-union 24hr 12hr))

(declare name ?String)

(declare timeSuff ?String)

(specify timeSuff (matches (re-? time)))

(declare duration ?Integer)

(specify duration (gte 0))

(declare eventName ?Object)

(specify eventName

(with name name)

(with timeSuff timeSuff))

(declare event ?Object)

(specify event

(with eventName eventName)

(with location ?Location)

(with startTime ?(Option Date))

(with duration duration))

(generate testSanity 100

(declare loc ?Location)

(declare suffix ?timeSuff)

(constrain-solutions suffix

(cover-regexp time))

(constrain-solutions loc

different-time-zones)))

Fig. 8. A Iorek program that generates 100 times and locations, where the inputs either exercise dif-
ferent branches of the time specification or have locations in different time zones. Location and
different-time-zones are primitives in an extensible language. The with syntax defines object fields
(we omit a straightforward formalization of objects and fields). The highlighted lines correspond to the test
outline and the rest correspond to the service specification.

⟨program⟩ ::= ⟨e⟩* ⟨model-gen⟩+

⟨model-gen⟩ ::= generate ⟨outline-name⟩ ⟨n⟩ ⟨e⟩*

⟨outline-name⟩ ::= ⟨racket-symbol⟩

⟨e⟩ ::= ⟨declare⟩ | ⟨specify⟩ | ⟨constrain⟩

⟨declare⟩ ::= declare ⟨var⟩ ⟨t⟩

⟨specify⟩ ::= specify ⟨var⟩ ⟨a⟩

⟨constrain⟩ ::= constrain-solutions ⟨var⟩ ⟨c⟩

⟨t⟩ ::= ⟨var⟩ | ⟨val⟩

⟨var⟩ ::= ⟨racket-symbol⟩

⟨val⟩ ::= ⟨symbolic⟩ | ⟨concrete⟩

⟨symbolic⟩ ::= . . .

⟨concrete⟩ ::= ⟨n⟩ | . . .

⟨a⟩ ::= and ⟨a⟩ ⟨a⟩ | or ⟨a⟩ ⟨a⟩ | ite ⟨t⟩ ⟨a⟩ ⟨a⟩
| not ⟨a⟩ | ⟨p-a⟩ ⟨t⟩+

⟨p-a⟩ ::= . . .

⟨c⟩ ::= all-of ⟨c⟩ ⟨c⟩ | some-of ⟨c⟩ ⟨c⟩
| not ⟨c⟩ | ⟨p-c⟩ ⟨t⟩+

⟨p-c⟩ ::= . . . // see Figure 12

Fig. 9. Iorek grammar

a variable and adds the resulting ⟨A⟩ to A as a conjunction. The constrain-solutions command

evaluates a constraint ⟨c⟩ about a variable and adds the resulting ⟨C⟩ toC as a disjunction. All three
can occur in the main program body (in which case they are global) or within a ⟨model-gen⟩ (in
which case they are local).

Every ⟨model-gen⟩ takes an ⟨outline-name⟩, a number ⟨n⟩, and a body ⟨e⟩* and generates a

result: either UNSAT, or a mapping from its name to a set of modelsM1, . . . ,Mn that satisfies the

environment that ⟨e⟩* evaluates to.

4.3 Controlling the Space of Solutions
Programmers can define what it means for models to be different using constrain-solutions.
We provide a language of built-in constraints for this (Figures 11 and 12).

By default, Iorek ensures that every generated model is not equal to any other generated model—

that is, that at least one symbolic value is mapped to a different concrete value for every pair of

generated models.

For example, if we are testing an authentication service with different usernames, we add the

following assertion to the environment between subsequent runs of the gen loop:

(, username (evaluate username model))

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:9

((es, gens), V ,A,C) ⇓ r
Program

(es, ∅, trueA, never) ⇓ (V ,A,C) (дens,V ,A,C) ⇓ r

((es, дens), ∅, trueA, never) ⇓ r

(gens, V ,A,C) ⇓ r

Model-Gens

(дh,V ,A,C) ⇓ rh (дt ,V ,A,C) ⇓ rt
(дh :: дt ,V ,A,C) ⇓ rh ⊎ rt

Model-Gen

(es,V ,A,C) ⇓ (V ′,A′,C′) M1, . . . ,Mn |= (V ′,A′,C′)

(generate(nm, n, es) :: (),V ,A,C) ⇓ {nm 7→ {M1, . . . ,Mn } }

(es, V ,A,C) ⇓ (V ′,A′,C′)
Empty

((),V ,A,C) ⇓ (V ,A,C)

Declare-Val

(es,V [var 7→ val],A,C) ⇓ (V ′,A′,C′)

(declare(var ,val) :: es,V ,A,C) ⇓ (V ′,A′,C′)

Declare-Var

(es,V [var1 7→ V [var2]],A,C) ⇓ (V ′,A′,C′)

(declare(var1,var2) :: es,V ,A,C) ⇓ (V ′,A′,C′)

Specify

(V , a (V [var])) ⇓a (V ′,A′) (es,V ′,A ∧ A′,C) ⇓ (V ′′,A′′,C′)

(specify(var , a) :: es,V ,A,C) ⇓ (V ′′,A′′,C′)

Constrain

(V ,A, c (V [var])) ⇓c (V ′,A′,C′) (es,V ′,A′,C ∨C′) ⇓ (V ′′,A′′,C′′)

(constrain(var , c) :: es,V ,A,C) ⇓ (V ′′,A′′,C′′)

Fig. 10. Iorek semantics

The default constraint ensures that the solver does not return the same model twice. When n is

the size of the model space, this amounts to BET using an assertion as a bound. This is not always

sufficient for testing: Modern solvers purposely explore close spaces by undoing as few choices as

possible [Barrett et al. 2008a,b]. That is, if the first username is "aaa", the second username may

be "aab", which is likely not different enough from "aaa" to test a different case.

We can instead generate usernames of different lengths:

(, (string-length username) (string-length (evaluate username model)))

If we have an edit distance function, we can generate usernames at a minimum distance:

(≥ (edit-distance username (evaluate username model)) min-distance)

More generally, we can assert the result of any relation between two values:

(λ (model) ((λ (v1 v2) ...) username (evaluate username model)))

In doing so, we guarantee that all values relate in this way, regardless of whether the relation

is transitive, since the assertions accumulate.
3
We implement primitive relations (not-equal,

different-lengths, and so on) this way.

3
Optimizations are possible for transitive relations (strictly increasing string length, for example).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:10 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

(V ,A, c) ⇓c (V ′,A′,C)
all

(V ,A, c1) ⇓c (V1,A1,C1) (V ,A, c2) ⇓c (V2,A2,C2)

(V ,A, c1 ∧ c2) ⇓c (V1++V2,A1 ∧ A2,C1 ∧C2)

always

(V ,A, always) ⇓c (V ,A, λ (M1,M2).#t)

some

(V ,A, c1) ⇓c (V1,A1,C1) (V ,A, c2) ⇓c (V2,A2,C2)

(V ,A, c1 ∨ c2) ⇓c (V1++V2,A1 ∧ A2,C1 ∨C2)

never

(V ,A, never) ⇓c (V ,A, λ (M1,M2).#f)

not

(V ,A, c) ⇓c (V ′,A′,C)

(V ,A, ¬c) ⇓c (V ′,A′, ¬C)

relation

(V ,A, r el (val)) ⇓c (V ,A,C)

(V ,A, relation(val, r el)) ⇓c (V ,A,C)

Fig. 11. Constraint semantics

⟨p-c⟩ ::= always | never | relation ⟨val⟩ ⟨relation⟩ | coverage ⟨coverage⟩ | . . .

⟨relation⟩ ::= not-equal | different-lengths | numeric-distance ⟨t⟩ | edit-distance ⟨t⟩ . . .

⟨coverage⟩ ::= cover-regexp ⟨t⟩ | cover-json ⟨t⟩ | . . .

Fig. 12. Some built-in constraints

4.4 Combining Constraints
Programmers can combine constraints using built-in combinators. The simplest of these are some-of
and all-of, which evaluate to ∨ and ∧ respectively (Figure 11).

Iorek also exposes a novel combinator that encodes a new mechanism for bounded enumeration:

the enumerate* combinator tells the solver to choose
4
from a list of assertions and to always make

a different choice.

The enumerate* combinator works as follows: It takes a list of assertions as and a list of

constraints cs, and returns a new environment extended with an assertion that chooses among as
and a constraint that the next model is different. Each ci in cs describes what it means for two

models that satisfy ai in as to be different. A different choice is a model that either satisfies ci , or a
different assertion aj from as, where cj describes what it means for two models that satisfy aj to
be different. In the simplest case, when every ci is never (the identity constraint), we generate one

model for each assertion:

(define (enumerate-linear as) (enumerate* as (map (λ (a) never) as)))

That is, (enumerate-linear (list a1 a2 a3)) asserts a1, a2, and a3 in some order.

Programmers can use enumerate* to define difference for groups of inputs conditionally. For

example, we can define numeric inputs as different if they are less than 100 and not equal to each

other, or greater than or equal to 100 and at least 50 apart:

(define (prefer-small x)

(enumerate*

(list (< x 100) (≥ x 100))

(list (relation x not-equal) (relation x (numeric-distance 50)))))

When the bound n is the size of the model space, this has the effect of prioritization—that is,

if we generate all satisfying positive numbers less than 1000, we are guaranteed to prefer small

numbers.

4
The * denotes dynamic choice, in keeping with Rosette syntax.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:11

The real power of enumerate* comes from its support for structured data: Programmers can

use enumerate* to write constraints over structured data and combine it with other constraints

recursively from within the structure. This makes it easy to define what it means to generate a

representative set of values for a specification.
For example, suppose we are testing a purchasing service with different items. To determine

whether items are different, we consider the structure of the service’s product tree, which places

items into categories and subcategories. We want to test our service with a few different items

from every subcategory. We define two items as different if they are in different subcategories, or if

they are in the same subcategory but have prices that are far enough apart:

(define (cover-products item tree)

(match tree

[(or ((root) l) ((cat _) l))

(define cs (map (curry cover-products item) l))

(enumerate* (map (λ (c) truea) cs) cs)]

[(subcat l)

(enumerate*

(list (in-subcat item l))

(list (relation item different-price)))]))

By recursively calling cover-products, we make nested enumerate* choices at every position

of the tree. At the subcategory level, we assert that the item must be in that subcategory, with the

constraint that any other item in that subcategory must have a different price. At the category

level, we recurse to every subcategory and enumerate* the resulting assertions (the item is in that

subcategory) and constraints (any other item in that subcategory has a different price). At the root

level, we recurse to every category and enumerate* the resulting assertions (choices of categories)

and constraints (always choose different categories). When we evaluate this constraint and call

the gen loop with the resulting environment, we get what we want: Within a subcategory we

generate only items that have prices that are far enough apart, and if we generate all models, then

we generate at least one item in every subcategory.

4.5 Implementing enumerate*

We implement enumerate* the sameway that we implement other relations, with a single constraint

that relates any pair of models.

Rosette makes it easy to choose from a set of assertions. The challenge in implementing

enumerate* is asking the solver to make a different choice. When there are finitely many val-

ues that satisfy our specification, if we always ask for a different value, we will enumerate all

values [Köksal et al. 2012], but many of these values will be reundant. And we cannot just assert

(, a (evaluate a M)), since this is equivalent to (¬ a), which does not tell the solver to pick a

different assertion.

This constraint that enumerate* evaluates to (Figure 13) ensures that the solver always picks a

different assertion. Consider, for example, enumerating over three assertions:

(enumerate* (list a1 a2 a3) (list never never never))

This will choose* from the three assertions, which will create new symbolic booleans b0 and b1
and will evaluate to an ite statement in Rosette:

(ite b0 a1 (ite b1 a2 a3))

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:12 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

(struct ite* constraint (b0 c1 c2))

(struct enumerate* constraint ([as] [cs]))

(define (choose-diff b0 C1 C2)

(λ (M)

(ite (evaluate b0 M)

(∨ ¬b0 (C1 M))

(∨ b0 (C2 M)))))

(define (combine-diff b0 en1 en2)

(env

(++ (λ (`b0) b0)

(env-V en1) (env-V en2))

(ite b0

(env-A en1) (env-A en2))

(choose-diff b0

(env-C en1) (env-C en2))))

(define (eval-c en) ; evaluate constraints
(match en

; ... other constraints from Figure 12
[(env V A (enumerate* (list a1) (list c1)))

(eval-c (env V (∧ A (eval-a a1)) c1))]

[(env V A (enumerate* (list a1 a2) (list c1 c2)))

(match (choose* a1 a2)

[(ite b0 a1 a2)

(define as (list (ite b0 a1 a2)))

(define cs (list (ite* b0 c1 c2)))

(eval-c (env V A (enumerate* as cs)))])]

[(env V A (enumerate* ah::at ch::ct))

(define as (list ah truea))

(define cs (list ch (enumerate* at ct))

(eval-c (env V A (enumerate* as cs)))]

[(env V A (ite* b0 c1 c2))

(combine-diff b0

(eval-c (env V A c1)) (eval-c (env V A c2)))]))

Fig. 13. Pseudocode for the enumerate* combinator, which combines a list of assertions and constraints
and returns (V ′,A′,C ′) where A′ chooses among provided assertions, C ′ tells the solver to always choose a
different assertion, and V ′ is V extended with the new symbolic boolean.

The enumerate* constraint will extend the environment with b0 and b1, and guarantee that

the solver maps each of them to some concrete value. Suppose the solver chooses the following

assignment:

(ite #f a1 (ite #t a2 a3)))

Then the assertion for that iteration is a2. The constraint that enumerate* evaluates to tells the

solver to choose a different assertion next time:

(λ (M)

(ite (evaluate b0 M)

(¬ b0)

(∨ b0 (ite (evaluate b1 M) (¬ b1) b1))))

In other words, next iteration, the solver will either flip b0 to #t or flip b1 to #f. It will also
ensure that no redundant paths are taken. That is, if b0 is true, it does not matter what b1 is, since

for any b1, the resulting assertion evaluates to a1:

(ite #t a1 (ite b1 a2 a3)))

The second part of the constraint guarantees that the solver only flips b1 if b0 is false, that way

Iorek does not generate two satisfying assignments to a1.
Passing the constraints c1 and c2 to enumerate* allows the developer to nest constraints

(including enumerate* statements) within enumerate* statements. To enumerate all possibilities,

the constraints should be never (identity). Otherwise, c1 is the constraint for the if branch, and
c2 is the constraint for the else branch.

If we always start with never, then nested enumerate* statements are guaranteed to visit each

assertion exactly once. This gives us the following theorem about the enumerate-linear function

we defined earlier:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:13

Theorem 4.1. For any set of n distinct assertions, in the empty environment, enumerate-linear
visits each assertion exactly once. That is, whenever the resulting environment is satisfiable, there are
at most n models that satisfy it, and each of those models satisfies a different assertion.

Proof Outline. The proof follows by induction on n. When n = 1, it is trivial. When n = 2, then

choose* introduces exactly one fresh symbolic boolean b0. By the definition of satisfiability and the

fact that there are only two possible values for b0 (true and false), we visit each assertion exactly

once. In the inductive case, for any n + 1, we can define the satisfiability criteria in terms of the

criteria for n with exactly one fresh boolean b1. Then the models are exactly those from n with b1
mapped to false, plus exactly one new model with b1 mapped to true. The rest follows by definition.

5 STRINGS AND REGULAR EXPRESSIONS
Service inputs are commonly strings bound by regexes. While Iorek spans more than just this

application domain, many of our implementation decisions are inspired by it. To make this possible,

we extend Rosette with the Racket string and regexp types so that they work with symbolic

values. We support some regexp literals by building an interpreter from those literals into SMT-LIB.

Rosette is agnostic to the back-end solver, and so Iorek can be used with any SMT-LIB solver with

string and regex support (we do not yet support domain-specific solvers like Hampi since Rosette

does not support them). In practice we use Z3, which has some string and regex support.
5

The idea of enumerate* is particularly useful for regex-bounded inputs. When generating strings

that match a regex, we do not want every single string—for many regexes, this would be an infinite

set of strings. Rather than generate a finite arbitrary subset of strings or strings up to a given length,

the enumerate* combinator allows us to define coverage strategies that generate a representative

set of strings for that regex. We show in Section 7 that this can increase coverage of the CUT.

5.1 Enumerating Inputs for a Regex
We define a cover-regexp constraint that allows us to generate a representative set of strings

for a regex. Consider a simple authentication service in which usernames must match the regex

[a-zA-Z0-9_]+. One way to generate usernames that cover this regex is to consider short and long

strings, and treat all character classes as different from each other, but each character within a

character class as the same:
6

"a" matches [a-z], "C" matches [A-Z], "7" matches [0-9], "_" matches [_],

"z0aC__l37" matches [a-z][a-zA-Z0-9_]+, "Jx_o0mNlO" matches [A-Z][a-zA-Z0-9_]+,

"9axN9__123" matches [0-9][a-zA-Z0-9_]+, "_aAg_0m__" matches [_][a-zA-Z0-9_]+

Using enumerate*, we can write this constraint as a recursive function on a simple subset of

regexes that has just character classes, unions, and repetition:

(define (cover-regexp s r)

(match r

[(char-class r1)

(enumerate* (list (matches s r1)) (list never))]

[(re-union r1 r2)

(enumerate* (list trueA trueA) (list (cover-regexp s r1) (cover-regexp s r2)))]

[(re-plus r1)

(enumerate* (list (matches s (re-+ r1))) (list (cover-regexp s r1)))]))

We can use this function as a primitive constraint to cover any regex that has this structure.

5
https://github.com/Z3Prover/z3

6
In this example, we vary only the first letter of the strings. The real implementation does more than this.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

https://github.com/Z3Prover/z3

91:14 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

5.2 Why Enumerate Over the Regex Structure?
When generating strings that match a regular expression, a simple and effective approach is to

compile the regular expression to a minimal DFA and then enumerate over the structure of the

DFA itself. We find enumerate* much more expressive than this: It allows us to make explicit the

notion of difference we are expressing. Consider a regex for full names which may have prefixes or

suffixes:

((Ms|Mr|Mrs|Dr)\s+)? [A-Z][a-z]+\s+ ([A-Z][a-z]+\s+)? [A-Z][a-z]+\s+ (Jr|Sr)?

The minimal DFA for this regex is complex since there are multiple ways to interpret strings

like "Dr John Smith Jr" ("Dr" can be a prefix or a first name). The way the regex is written, its

structure (as it is used within the CUT) is much more transparent.

The function we define to cover a regex does not always generate the same set of strings for

two regexes that accept equivalent languages. This is by design. The way a regex is written can

communicate more information than the language it accepts alone, and two regexes that accept

equivalent languages do not always communicate the same intent.

The name regex, for example, calls out prefixes and suffixes separately. For testing purposes, it

makes sense to consider strings with different prefix-suffix combinations, as there are few and they

may exercise different code behavior. But if we treat character classes as equivalent to unions, then

there are infinitely many names. Even if we restrict the length of the names that we generate, we

still end up with redundant strings (such as "Joe Smith" and "Jon Smith"). By treating elements

within a character class as the same, we generate a small set of interesting inputs.

This is, of course, a heuristic. One major benefit of enumerate* is that it makes it easy to

define several coverage mechanisms backed by different heuristics (including one that does not

distinguish between character classes and unions) and to switch among them easily. The enumerate*
combinator is also in no way limited to regular domains—many services take JSON as input, and

we can use enumerate* to cover the structure of a JSON schema.

In practice, enumerate* helps us define non-obvious but useful notions of differences for strings.
Our default implementations take feedback from potential users into account: We treat character

classes differently from unions since character classes express a notion of sameness. We generate

strings of a few different lengths when covering an infinite regex to find length-sensitive bugs.

JSON accepts arbitrary amounts of whitespace; potential users expressed the desire to exercise

different amounts of whitespace when generating JSON. The enumerate* combinator makes it

easy to express these notions of difference.

5.3 Combining Constraints
Since enumerate* is a combinator, we can combine enumeration with other constraints and take

advantage of the power of SMT.

For example, Racket regexps have a notion of matching a single literal character. A simple way

to express this to the solver (rather than giving it the entire alphabet of possible Racket characters)

is to assert that the string has length one. We can extend cover-regexp to handle this:

(define (cover-regexp s r)

(match r

; ...
[(any-char) (enumerate* (list (= (string-length s) 1)) (list never))]))

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:15

6 INDUSTRIAL CASE STUDIES
We integrated a Iorek prototype into a testing framework at Amazon and used it to find bugs

in five real services in development for later use in production. We chose services from a list of

services that were being tested by security testers. We selected services with specifications that

exercised interesting functionality in our tool, such as bounded numbers (numeric values for dates,

for example) and strings that match patterns (paths, account IDs, and so on).

We found four code and specification bugs in three of these services. Developers accepted three

of these bugs; the other was identified as an intentional hole in the specification that does not cause

unexpected behavior. We found one of the bugs that developers accepted using a custom solution

constraint; for the other three bugs, we used the default constraint. In all five services, we tested

previously untested behavior.

6.1 Integration and Deployment
We integrated a preliminary version of Iorek into a testing framework at Amazon. The goal of

Iorek is to give developers the benefit of a test generation framework without any additional cost,

given that developers are resistant to tools that disrupt development flow [Johnson et al. 2013]. To

use Iorek, the developer simply writes tests as she normally would, but leaves some inputs in the

tests blank. We achieved this by reusing existing specifications, writing a Iorek Java front-end, and

integrating the front-end with JUnit.

Existing Specifications. Developers at Amazon use a framework that allows them to write input

specifications for their service APIs. We wrote an interpreter that translates these specifications

(which exist for every service) into Iorek so that the developer does not need to write a specification

file (like the file in the example in Figure 2). These specifications are often partial, so we allow

developers to add stronger specifications in the test outline, but additional specifications are

optional.

Java Front-End. We implemented symbolic inputs using an Input object rather than the ? syntax
seen in Figure 3 so that test outlines compile as Java files with no changes to the compiler. We

used the builder pattern so that developers do not need to learn new syntax. That is, ?timeSuffix
becomes:

new Input<>.Builder(timeSuffix, String.class)

.withCoverageMode(coverRegexp(time))

.build();

JUnit Integration. Test outline files run with JUnit with no changes to the build process. Program-

mers can write test outlines alongside JUnit tests and use the testing patterns they are accustomed

to, such as mock objects, which allow developers to stub out sensitive or irrelevant behavior [Mack-

innon et al. 2001]. To achieve this, we implemented a custom JUnit TestRunner. The prepare phase
of the TestRunner temporarily replaces symbolic inputs with dummy objects of the correct types

and evaluates the test outline file and service specification to a Iorek program. It then runs the

program and evaluates it to a result, which it saves to a JSON file. The run phase runs each test n
times for the specified n, evaluating each symbolic input in a given test outline to the corresponding

value in the result.

6.2 Writing Tests
While we are so far the only users, we found it straightforward to use Iorek, even on services with

code and specifications that were unfamiliar to us. We used specifications and test files that already

existed for these services. We modified each test file to run with the Iorek TestRunner and passed

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:16 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

it the name of the specification. The tool fetched the specification from the internal codebase and

translated it into Iorek.

We then generalized existing tests, turning concrete inputs that were constrained by the spec-

ification into symbolic inputs. When there were an insufficient number of tests, we wrote new

test outlines that were similar to existing tests. The specification and existing tests alone made it

clear in all but a few cases which inputs were good candidates for symbolic inputs without any

need to look at the CUT. Most outlines had just one symbolic input, but some had multiple. When

inputs were underconstrained, we added new specifications from within the test, using the names

of specifications (for example, accountID) to infer what they represent. We chose a difference

constraint that seemed most appropriate for the data type. We defaulted to the not-equal coverage
strategy, but also used cover-regexp and different-lengths for strings constrained by regexes

as well as a distance metric for numbers.

For each test outline, we started by choosing a small number n of tests to generate (typically 10).

If this produced a bug, then we did not increase n. Otherwise, we increased n in small increments to

a maximum of 100. The largest n that we needed to produce a bug in the services we tested was 50.

6.3 Running Iorek
We ran the TestRunner on each of the test outline files. The TestRunner spent most of its execution

time in the prepare pass, where it translated the outlines into Iorek, queried Z3, and generated

inputs. We found the performance overhead reasonable for all of our tests, especially since in

practice, n was small and so there were not many inputs to generate (we evaluate the performance

of Iorek for large queries in Section 8). There was no significant performance overhead in the run
pass, which ran each outline n times with the generated inputs.

A simple and effective way to minimize the performance overhead of prepare is to reuse saved

inputs when there are no changes in a test (rather than querying the solver again). This can also

help with regression testing. The framework already generates inputs as JSON before parsing them

back into Java, so this is just a matter of implementation.

6.4 Finding Bugs
In total, we wrote 42 test outlines, 35 of which were generalizations of existing tests. Of the four

bugs we found, two were from generalizing tests and two were from creating new tests. Three used

additional specifications, although we could avoid adding specifications for two of these three by

providing default specifications for common service input types (for example, account IDs).

In three of the bugs we found, we used the default solution constraint, while in one we used

a custom solution constraint (cover-regexp). While we did not evaluate these services with any

other tools, we suspect that existing BET tools could find the bugs that we found using the default

solution constraint, since the default constraint amounts to BET when n is the size of the input

space: It generates all n inputs that satisfy the assertion. We suspect that existing BET tools would

not find the bug that we needed a custom solution constraint to find, since the custom constraint is

beyond the scope of what BET tools can express.

Two of the bugs we found were in services that handled some inputs poorly, and two were in

services that were overly lenient. We found untested scenarios in all five services. We discuss these

bugs and scenarios below.

Poorly handled inputs. Two of the bugs that we found were in services that did not correctly

handle some inputs. For example, one service takes a string which represents a colon-delimited path.

We generalized an existing test and changed this input to a symbolic input. Using cover-regexp,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:17

we found that the service handles most characters correctly, but crashes on paths that contain

underscores. This bug has been accepted by the developer.

Overly lenient services. Two of the bugs that we found were in services that took inputs that

cannot be valid. For example, one service takes a string identifier that ought to be numeric. The

identifier is used widely enough in other services that we were able to infer a Iorek specification for

it. In doing so, we found that the service accepted invalid identifiers. The developers have accepted

this bug.

Untested scenarios. In all five services, we exercised scenarios that were not yet tested. Some of

these scenarios may be useful for regression testing. For example, one service restricts an input to

one of over thirty Enum values. Using Iorek, we were able to automatically test all inputs. Another

service correctly errors on an empty input. A test case expressing this as desired may be useful.

7 CODE COVERAGE EVALUATION
We used Iorek to generate string inputs for the random testing tool Randoop [Pacheco and Ernst

2007] to evaluate the effectiveness of Iorek at increasing code coverage. We focused on strings

because they are common in services and exercise interesting Iorek functionality. We found the

following:

(1) Iorek increased code coverage. The inputs that Iorek produced increased the coverage of

Randoop tests on 15 of 18 benchmarks.

(2) Specifications were useful. Using a specification to generate strings increased coverage

on 14 of 18 benchmarks.

(3) Having multiple coverage strategies was useful. On 4 benchmarks, not-equal per-

formed best; on 5 benchmarks, cover-regexp performed best.

7.1 Using Randoop
Randoop randomly generates sequences of method calls, executes these sequences, and uses

feedback to automatically produce unit tests for Java programs. Randoop has limited built-in string

support: It relies on simple strings and on hard-coded test strings in the CUT. We wrote a small (24

LOC) Racket program that runs Iorek programs and compiles the results into Randoop inputs.

We chose Randoop because it is an established tool with an interface for extending input

generation. This made it possible to measure the effect of using Iorek to generate inputs while

controlling for expertise in writing test outlines. We chose Randoop over enumeration tools like

Kaplan [Köksal et al. 2012] and SciFe [Kuraj et al. 2015] since we focused our implementation

efforts on constrained strings, which those tools do not support. We did not compare to BET tools

such as Korat [Boyapati et al. 2002] since Iorek’s not-equal strategy with maximal n amounts to

BET using an assertion as a bound.

7.2 Evaluating Coverage
We selected our string benchmarks

7
from prior testing work [McMinn et al. 2012; Shahbazi and

Miller 2016]. We ran off-the-shelf Randoop for a minute for each benchmark without Iorek strings

to produce baseline tests.

We wrote a basic string regex to control for the effect of generating unconstrained strings:

(declare basic-string #rx"([a-zA-Z0-9-]|/|\\|;|_|,|:|=|@|!|'|%|#|(\\.)|)*")

While this is more restrictive than ".*", it is important for sane results, since querying Z3 for

strings with no specification at all only returns sequences of null characters.

7
We did not evaluate the LGOL benchmark because the code was no longer available.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:18 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

For each benchmark, we wrote two regexes: a black-box regex to demonstrate model-based input

generation and a white-box regex to demonstrate the plausibility of using Iorek for white-box input

generation. We found all of the black-box regexes on free online sources (such as StackOverflow

and RegExLib) using only descriptions of the datatypes and comments in the CUT, and modified

them only as necessary to run Iorek. We manually inspected the CUT to write white-box regexes

that were likely to exercise different cases.

For example, one benchmark validates 24 hour times. We found the black-box regex by searching

RegExLib, and we wrote our white-box regex after inspecting the CUT and finding that it special-

cases zero, invalid characters, and invalid times:

; black-box
(declare hh #rx"(([0-1]\d)|(2[0-3]))")
(declare mm #rx"[0-5]\d")
(declare 24Hour (concat ":" hh mm))

; white-box
(declare hh #rx"(0|[1-2]|[3-9]|X)(0|[1-3]|[4-9])")
(declare mm #rx"(0|[1-5]|[6-9])(0|[1-9])")
(declare 24Hour (concat ":" hh mm))

We then produced as many strings as we could in a minute using these regexes and strategies:

(1) Basic string regex with not-equal
(2) Black-box regex with not-equal
(3) Black-box regex with cover-regexp
(4) White-box regex with not-equal
(5) White-box regex with cover-regexp

For example, we wrote this Iorek program to generate strings covering the black-box time:

(define-program 24HourBlackbox
; ... black-box regex from above, which can produce at most two inputs with cover-regexp
(generate testCoverRegexp 2 (constrain-solutions time (cover-regexp 24Hour))))

This produced a file with strings "02:04" and "20:22". Each program produced an input file;

we ran Randoop for a minute for each and measured line coverage of generated tests with JaCoCo.
8

7.3 Results
We summarize our results in Figure 14. Iorek enhanced the performance of Randoop on 15 of the 18

benchmarks for both black-box andwhite-box testing. This effect was not just from generatingmany

strings—using a regex specification increased coverage compared to generating underconstrained

strings for 14 of the 15 benchmarks. Having multiple coverage strategies for the same specification

was useful, as no single coverage strategy performed uniformly best: Both strategies performed

equally well in 9 of 18 benchmarks, not-equal with a specification outperformed cover-regexp
in 4 benchmarks, and cover-regexp outperformed not-equal in the remaining 5 benchmarks.

The performance of different coverage strategies depended on the specification and the CUT.

Hard-coded Strings. The CUT included hard-coded test strings in 4 benchmarks. Randoop used

these test strings to generate tests and performed well in all 4 cases. Using Iorek provided no

additional benefit in 3 of these cases. Iorek was still sometimes useful even when these hard-coded

test strings existed: For the 4th benchmark, Iorek produced International Bank Account Numbers

that passed a validity check, which the hard-coded test strings in the code failed to do.

No Best Strategy. Neither coverage strategy performed best in 5 of the benchmarks that did

not have hard-coded strings. In 1 of these benchmarks, even not-equal without a specification
produced a single valid year string that hit the only case necessary to achieve full coverage. In the

other 4, the not-equal strategy always produced more strings than cover-regexp in a minute,

but both strategies produced strings for either the black-box or white-box regex that exercised

enough cases to achieve the maximum coverage possible (excluding private and protected methods,

which Randoop does not call).

8
http://www.jacoco.org/jacoco/trunk/index.html

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

http://www.jacoco.org/jacoco/trunk/index.html

A Solver-Aided Language for Test Input Generation 91:19

xy z1 z2

10

20

30

40

50

60

70

80

90

100

Hard-coded StringsNo Best StrategyHide Cases Reveal Cases

L
i
n
e
s
c
o
v
e
r
e
d
(
%
)

Randoop not-equal
black-box

not-equal
white-box

not-equal
black-box

cover-regexp
white-box

cover-regexp

Fig. 14. Line coverage for generated tests for a string benchmark suite compared to Randoop alone using
different coverage strategies: not-equal with a basic string specification, not-equal with a black-box regex,
and cover-regexp with a black-box regex, not-equal with a white-box regex, and cover-regexp with a
white-box regex. When constructors threw exceptions, Randoop achieved 0% coverage—those bars do not
show up in the graph. Randoop did well when there were hard-coded strings. Iorek inputs increased coverage
in all of the other cases; specifications were useful in all but one of these cases. Different strategies performed
best for different specifications.

Hide Cases. The not-equal strategy outperformed the cover-regexp strategy in 4 benchmarks.

In these cases, the black-box regex hid information about cases that the CUT treated differently

and that were not obvious from the datatype itself (for example, "00:00" in 24 hour times). The

white-box regexes were able to generate these invalid cases using both strategies.

Reveal Cases. The cover-regexp strategy outperformed the not-equal strategy in 5 of the

benchmarks. In these cases, one or both of the regexes revealed important semantic information

about the CUT. The not-equals strategy did not always manage to produce strings that exercised

these different cases despite producing more values than cover-regexp. For example, the black-box

regex we found for an International Standard Book Number is (97(8|9))?\d\d\d\d\d\d\d\d\d(\d|X).

This handles different cases in combination with each other that the code treats differently: values

that end in X, values that end in digits, 10 digit values, and 13 digit values. The cover-regexp
strategy achieved 77.0% coverage with 6 inputs, while the not-equal strategy achieved only 63.5%

coverage with 544 inputs. The white-box regex further considered invalid lengths and characters

as well as dash-separated values—white-box cover-regexp achieved 91.9% coverage in 73 values

while white-box not-equal did not improve.

8 SOLVER QUERY PERFORMANCE TRADEOFFS
By default, to generate n inputs, Iorek’s generation loop (Figure 7) queries the solver n times, asking

for values one at a time with n total constraints. We compared this to three other approaches for

evaluating Iorek’s satisfiability criteria (Figure 6):

(1) Using “∀”:

∀1 ≤ i ≤ n,A(vi) ∧ ∀1 ≤ j ≤ n, (i , j ⇒ C (vi ,vj))
(2) Using distinct? when possible:

distinct?(v1, . . . ,vn)
(3) All at once, in a single query with n2 constraints:

C (v1,v2) ∧C (v1,v3) ∧ . . . ∧C (vn−1,vn)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:20 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

Table 1. Different integers

n Real Time (s)

Default All at once distinct?
200 32.905 6.020 .058
400 157.499 150.538 .096
600 395.355 Timeout .162

Table 2. Integers at minimum distance 10

n Real Time (s)

Default All at once distinct?
100 29.267 1.754 NA

200 121.011 62.531 NA

300 337.553 238.759 NA

400 591.931 Timeout NA

Table 3. Strings of different lengths matching "[a-z]*"

n Real Time (s)

Default All at once distinct?
50 1.967 Timeout Timeout

100 18.552 Timeout Timeout

150 89.046 Timeout Timeout

200 298.207 Timeout Timeout

Table 4. Strings covering "[_a-zA-Z][_a-zA-Z0-9]+"

n Real Time (s)

Default All at once distinct?
200 11.212 Timeout NA

400 35.921 Timeout NA

600 68.989 Timeout NA

800 112.061 Timeout NA

1000 167.697 Timeout NA

We used Z3 as the solver and set a timeout of 600 seconds. When covering a regexp, we used a

constraint that treats + the same as concatenation ("aaa" is always distinct from "aaaa" and so

on) so that we could generate many values for the sake of evaluation.

Iorek’s generation loop is the only approach we found that scaled to large and complex queries.

Using “∀” timed out for the smallest and simplest query. Using distinct? was by far the fastest

approach for simple queries when it was possible, but it was very slow when it required Z3 to invert

a function, and it could express only two of four queries. Asking for values all at once performed

well for small n for simple queries, but timed out for complex queries and for large n.
Given that the Iorek semantics are independent of the encoding, it may be worth using heuristics

to switch between different encodings for simple queries and small n. Furthermore, it is possible

that different solvers have different optimal encodings for the same queries—while we are yet to

investigate this, it may also be worth switching encodings based on what is optimal for a particular

solver. We summarize the trade-offs of the quantifier-free approaches with Z3 below.

distinct? The simplest query (Table 1) asked for n different Java integers. For this query, using

distinct? was by far the fastest for all n. However, using distinct? to ask for many strings of

different lengths matching a regex timed out for all queries (Table 3), likely because this query

required Z3 to invert a function (str.len). The other two queries cannot be expressed using

distinct?. Using distinct? appears to be optimal when it can express a query and when it does

not require Z3 to invert a function.

All at once. For both integer queries, asking for values all at once was faster than one at a time

for small n, but slower for large n (Tables 1 and 2). For both string queries, all at once timed out for

all queries (Tables 3 and 4). For simple queries with small n, it was faster to ask for values all at

once rather than one at at time. Given that strings are new to Z3, we suspect that heuristics are yet

to be implemented, and so string queries are currently more complex than integer queries.

One at a time. For both integer queries, asking for values one at a time was slower than all at

once for small n, but outpaced all at once when n became sufficiently large (Tables 1 and 2). For

both string queries, one at a time was the fastest across all n (Tables 3 and 4). One at a time was the

only approach that scaled to all four queries, and was optimal for large n and complex queries.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

A Solver-Aided Language for Test Input Generation 91:21

9 RELATEDWORK
We have already discussed angelic execution and synthesis [Bodik et al. 2010; Solar Lezama 2008],

relational logic solvers [Torlak and Jackson 2007], BET tools and generators [Boyapati et al. 2002;

Goodenough and Gerhart 1975; Khurshid and Marinov 2004; Rosner et al. 2014; Senni and Fioravanti

2012], DSLs for property-based testing [Claessen and Hughes 2000; Lampropoulos et al. 2017], test

generation and symbolic execution tools [Anand et al. 2007; Boyapati et al. 2002; Cadar et al. 2006;

Chipounov et al. 2011; Fraser and Arcuri 2011; Godefroid et al. 2005; Pacheco and Ernst 2007; Sen

et al. 2005; Tillmann and De Halleux 2008], and Grammar-Based Whitebox Fuzzing [Godefroid

et al. 2008] in Section 3. Here we go into some more detail and discuss other related work.

Solver-Aided Languages. Solver-aided languages use constraint solvers for synthesis, angelic

execution, verification, and debugging. Rosette [Torlak and Bodik 2013] is a framework for building

these languages. We extend Rosette with strings and regexes and implement our language in

Rosette.

Iorek is not the first solver-aided language for testing. PBNJ [Samimi et al. 2013] helps program-

mers write mocks for testing. Iorek generates inputs which can be used alongside mocks.

Enumeration. SciFe [Kuraj et al. 2015] is a language for enumerating structures. SciFe provides

dependent enumerators that can be used structurally to rule out redundant inputs. Iorek’s bounded

enumeration combinator is similar in expressiveness to dependent enumerators. Unlike SciFe, Iorek

can express this style of enumeration to any SMT solver.

Kaplan [Köksal et al. 2012] is a general-purpose constraint programming extension of Scala.

Kaplan also gives programmers control over the solution space. Kaplan can be used for exhaustive

and ordered enumeration. In contrast with Kaplan, Iorek’s constructs for control over the solution

space are declarative. Kaplan also does not contain the notion of a representative set or support

constraints on strings.

Languages for Test Input Generation. Iorek is a DSL for test input generation, and is thus similar

to the property-based testing DSL QuickCheck [Claessen and Hughes 2000]. Iorek and QuickCheck

both enable the programmer to control the generation of inputs. However, they do so in different

ways: QuickCheck programmers write probabilistic constructive generators which assign weights

to input possibilities, while Iorek programmers write declarative generators which abstract details

of low-level datatypes and query SMT.

These approaches have tradeoffs: Iorek may be more appropriate for generating tests that use

SMT-supported datatypes, since using Iorek lessens the developer burden of reasoning about those

datatypes. QuickCheck may be more appropriate for generating tests that do not make heavy use of

those datatypes or that require guarantees on the probability distribution of inputs. Incorporating

QuickCheck and Iorek into the same tool would simplify writing generators for SMT-supported

datatypes and give the developer fine-grained control over inputs both probabilistically and using

SMT.

The DSL Luck [Lampropoulos et al. 2017] makes it easier to write probabilistic generators for

QuickCheck-style testing. Like Iorek, Luck is a DSL for test input generation that interacts with

constraint solvers. However, Luck uses constraint solvers for efficiency, not for controlling the

distribution of generated inputs. In contrast, Iorek uses constraint solvers to control the space of

generated inputs and allow programmers to write non-probabilistic generators. Luck also leaves

compatibility with off-the-shelf solvers to future work.

Testing and Fuzzing. Equivalence partition testing is a technique that divides inputs into classes

that are equivalent according to some property and does not generate multiple equivalent in-

puts [Ntafos 1998]. Recent work [Anand et al. 2006] uses symbolic execution and model checking

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:22 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

to rule out equivalent cases. Iorek can be thought of as a language for equivalence partition testing.

Unlike existing approaches, Iorek allows the programmer to define the notion of input equivalence,

combine this notion with predicates about the input, and pass the resulting constraints to any SMT

solver.

Reggae [Li et al. 2009] introduces a technique that helps existing automated testing and symbolic

execution tools produce better inputs for strings constrained by regexes. Iorek can also be used for

this purpose (we demonstrate the use of Iorek with Randoop in Section 7), but is not limited to

strings and regular domains. Furthermore, Iorek provides a simple IR that can be used with multiple

testing tools and that gives programmers granular control over how it generates these inputs.

The Iorek implementation at Amazon uses existing service specifications to generate inputs. In

this way, it is similar to model-based testing tools, which use a specification of the code to generate

tests [Dick and Faivre 1993]. Recent work in model-based parametric testing [Calamé et al. 2007]

combines this approach with a constraint-solving procedure. Unlike these approaches, Iorek is

agnostic to whether specifications come from a model of the code or the CUT. Iorek can also be

used with any SMT solver.

Field-exhaustive testing [Ponzio et al. 2016] uses incremental SAT solving to generate fewer,

higher quality inputs than BET. Iorek expresses a similar style of coverage, except that it is not

specialized to objects and uses an SMT solver to handle strings and other theories.

Fuzzers automatically produce interesting inputs to trigger invalid program states, often to test

security vulnerabilities. SAGE [Godefroid et al. 2008] uses symbolic execution to find constraints to

generate inputs that exercise different paths. AFL-Fuzz
9
uses branch coverage to generate interesting

inputs. Fuzzers are meant to be used without any guidance; in contrast, Iorek is meant to be used

in a testing context to help the programmer write better tests, and gives the programmer control

over what constitutes an interesting input.

Guiding Solvers. Many existingworks guide solvers to optimize performance, including CEGIS [So-

lar Lezama 2008], the synthesis algorithm SKETCH uses to efficiently solve nested quantifiers.

Recent work evaluating CEGIS [Jha and Seshia 2014] investigates the impact of different kinds of

counterexamples on the performance of the algorithm. Metasketches [Bornholt et al. 2016] expose

a way of controlling the space of solutions to solve the problem of optimal synthesis. Iorek’s con-

straints provide a general way to guide the solver over a sequence of queries to find an interesting

set of inputs. This is similar to recent work using solvers for sampling and counting problems [Meel

et al. 2015], except that it is more general.

10 CONCLUSIONS AND FUTUREWORK
We designed and implemented a solver-aided language and testing framework to tackle the tedious

process of generating test inputs. Our tool Iorek generates many satisfying solutions (inputs) and
empowers the programmer with the ability to express how these solutions differ from each other.

We implemented the Iorek back-end in Rosette and exposed a rich language for constraining how

inputs differ. In this language, we introduced a bounded enumeration combinator that makes it

easy to define a flexible notion of a representative set of values for a structure and use an SMT

solver to generate those values. We demonstrated the power and flexibility of this combinator to

generate strings. We showed that Iorek is effective at finding bugs in an industrial setting, can

increase code coverage of a random testing tool, provides useful flexibility, and scales to large and

complex queries.

9
http://lcamtuf.coredump.cx/afl/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

http://lcamtuf.coredump.cx/afl/

A Solver-Aided Language for Test Input Generation 91:23

10.1 Future Work
Future work could use constraints on the solution space (such as the existence of a unique solution)

to optimize the performance of a solver in finding a single solution. Future evaluations could

include Iorek performance with solvers other than Z3, comparison with fuzzers, and a user study

on writing difference constraints. Possible extensions to Iorek include synthesizing inputs from

examples [Gulwani 2012], deriving white-box specifications, test input prioritization for unbounded

model spaces, Reggae integration, QuickCheck integration, and applying Iorek to other domains.

ACKNOWLEDGMENTS
We thank Emina Torlak for help with our contributions to Rosette. We thank Nikolaj Bjorner for

prompt fixes to bugs in the development version of Z3. We thank Rohin Shah for help formalizing

the enumerate* combinator. We thank Benjamin Keller for help integrating Iorek into Randoop. We

thank Neha Rungta, Byron Cook, and the UWPLSE lab for feedback on early revisions. This material

is based upon work supported by the National Science Foundation Graduate Research Fellowship

under Grant No. DGE-1256082. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES
Saswat Anand, Corina S. Păsăreanu, and Willem Visser. 2006. Symbolic Execution with Abstract Subsumption Checking

(SPIN).
Saswat Anand, Corina S. Păsăreanu, and Willem Visser. 2007. JPF-SE: A Symbolic Execution Extension to Java PathFinder

(TACAS).
Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2008a. Handbook of Satisfiability. Chapter Satisfiability

Modulo Theories, 127–149.

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2008b. Handbook of Satisfiability. Chapter Satisfiability

Modulo Theories, 737–797.

Nikolaj Bjørner, Vijay Ganesh, Raphaël Michel, and Margus Veanes. 2012. An SMT-LIB format for sequences and regular

expressions (SMT Workshop).
Rastislav Bodik, Satish Chandra, Joel Galenson, Doug Kimelman, Nicholas Tung, Shaon Barman, and Casey Rodarmor. 2010.

Programming with Angelic Nondeterminism (POPL).
James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing Synthesis with Metasketches (POPL).
Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat: Automated Testing Based on Java Predicates

(ISSTA).
Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2006. EXE: Automatically Generating

Inputs of Death (CCS).
Jens R. Calamé, Natalia Ioustinova, and Jaco van de Pol. 2007. Automatic Model-Based Generation of Parameterized Test

Cases Using Data Abstraction. ENTCS 191 (2007), 25–48.
Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A Platform for In-vivo Multi-path Analysis

of Software Systems (Proceedings of the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems).

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs (ICFP).
Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated Testing of Refactoring Engines (ESEC-FSE).
Jeremy Dick and Alain Faivre. 1993. Automating the generation and sequencing of test cases frommodel-based specifications

(International Symposium of Formal Methods Europe).
Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation for object-oriented software (ESEC/FSE).
Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based Whitebox Fuzzing (PLDI).
Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing (PLDI).
Patrice Godefroid, Michael Y Levin, and David A Molnar. 2008. Automated Whitebox Fuzz Testing (NDSS).
John B. Goodenough and Susan L. Gerhart. 1975. Toward a Theory of Test Data Selection. In Proceedings of the International

Conference on Reliable Software.
Sumit Gulwani. 2012. Synthesis from examples: Interaction models and algorithms (SYNASC).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

91:24 Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran

Susmit Jha and Sanjit A. Seshia. 2014. Are there good mistakes? A theoretical analysis of CEGIS (3rd Workshop on Synthesis
(SYNT)).

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why Don’t Software Developers Use

Static Analysis Tools to Find Bugs? (ICSE).
Sarfraz Khurshid and Darko Marinov. 2004. TestEra: Specification-Based Testing of Java Programs Using SAT. ASE (2004).

Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. 2012. Constraints As Control (POPL).
Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. 2015. Programming with Enumerable Sets of Structures (OOPSLA).
Leonidas Lampropoulos, Diane Gallois-Wong, Cătălin Hriţcu, John Hughes, Benjamin C. Pierce, and Li-yao Xia. 2017.

Beginner’s Luck: A Language for Property-based Generators (POPL).
Nuo Li, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009. Reggae: Automated Test Generation

for Programs Using Complex Regular Expressions (ASE).
Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. 2014. A DPLL(T) Theory Solver for a

Theory of Strings and Regular Expressions (CAV).
Tim Mackinnon, Steve Freeman, and Philip Craig. 2001. Extreme Programming Examined. Chapter Endo-testing: Unit

Testing with Mock Objects, 287–301.

Phil McMinn, Muzammil Shahbaz, and Mark Stevenson. 2012. Search-Based Test Input Generation for String Data Types

Using the Results of Web Queries (International Conference on Software Testing, Verification and Validation).
Kuldeep S. Meel, Moshe Y. Vardi, Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Dror Fried, Alexander Ivrii, and

Sharad Malik. 2015. Constrained Sampling and Counting: Universal Hashing Meets SAT Solving. CoRR (2015).

Simeon Ntafos. 1998. On Random and Partition Testing (ISSTA).
Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed Random Testing for Java (OOPSLA).
Pablo Ponzio, Nazareno Aguirre, Marcelo F. Frias, and Willem Visser. 2016. Field-exhaustive Testing (FSE).
Nicolás Rosner, Valeria Bengolea, Pablo Ponzio, Shadi Abdul Khalek, Nazareno Aguirre, Marcelo F. Frias, and Sarfraz

Khurshid. 2014. Bounded Exhaustive Test Input Generation from Hybrid Invariants (OOPSLA).
Hesam Samimi, Rebecca Hicks, Ari Fogel, and Todd Millstein. 2013. Declarative Mocking (ISSTA).
Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing Engine for C (ESEC/FSE).
Valerio Senni and Fabio Fioravanti. 2012. Generation of Test Data Structures Using Constraint Logic Programming (TAP).
Ali Shahbazi and James Miller. 2016. Black-Box String Test Case Generation Through a Multi-Objective Optimization. IEEE

Transactions on Software Engineering (2016), 361–378.

Armando Solar Lezama. 2008. Program Synthesis By Sketching. Ph.D. Dissertation. EECS Department, University of California,

Berkeley.

Nikolai Tillmann and Jonathan De Halleux. 2008. Pex–white box test generation for. net (TAP).
Emina Torlak and Rastislav Bodik. 2013. Growing Solver-aided Languages with Rosette (Onward!).
Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder (TACAS).
Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic String Solver for Vulnerability Detection in Web

Applications (CCS).
Richard Uhler and Nirav Dave. 2013. Smten: Automatic Translation of High-level Symbolic Computations into SMT Queries

(CAV).
Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A Z3-based String Solver for Web Application Analysis

(FSE).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 91. Publication date: October 2017.

	Abstract
	1 Introduction
	2 Using Iorek
	3 Our Constraint Problem, Contrasted
	4 Iorek Design and Implementation
	4.1 The Iorek IR
	4.2 Syntax and Semantics
	4.3 Controlling the Space of Solutions
	4.4 Combining Constraints
	4.5 Implementing enumerate*

	5 Strings and Regular Expressions
	5.1 Enumerating Inputs for a Regex
	5.2 Why Enumerate Over the Regex Structure?
	5.3 Combining Constraints

	6 Industrial Case Studies
	6.1 Integration and Deployment
	6.2 Writing Tests
	6.3 Running Iorek
	6.4 Finding Bugs

	7 Code Coverage Evaluation
	7.1 Using Randoop
	7.2 Evaluating Coverage
	7.3 Results

	8 Solver Query Performance Tradeoffs
	9 Related Work
	10 Conclusions and Future Work
	10.1 Future Work

	Acknowledgments
	References

