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Abstract11

Guaranteeing correct compilation is nearly synonymous with compiler verification. However, the12

correctness guarantees for certified compilers and translation validation can be stronger than we13

need. While many compilers do have incorrect behavior, even when a compiler bug occurs it may14

not change the program’s behavior meaningfully with respect to its specification. Many real-world15

specifications are necessarily partial in that they do not completely specify all of a program’s behavior.16

While compiler verification and formal methods have had great success for safety-critical systems,17

there are magnitudes more code, such as math libraries, compiled with incorrect compilers, that18

would benefit from a guarantee of its partial specification.19

This paper explores a technique to get guarantees about compiled programs even in the presence20

of an unverified, or even incorrect, compiler. Our workflow compiles programs, specifications, and21

proof objects, from an embedded source language and logic to an embedded target language and22

logic. We implement two simple imperative languages, each with its own Hoare-style program logic,23

and a framework for instantiating proof compilers out of compilers between these two languages24

that fulfill certain equational conditions in Coq. We instantiate our framework on four compilers:25

one that is incomplete, two that are incorrect, and one that is correct but unverified. We use these26

instances to compile Hoare proofs for several programs, and we are able to leverage compiled proofs27

to assist in proofs of larger programs. Our proof compiler framework is formally proven sound in Coq.28

We demonstrate how our approach enables strong target program guarantees even in the presence of29

incorrect compilation, opening up new options for which proof burdens one might shoulder instead30

of, or in addition to, compiler correctness.31
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1 Introduction36

Program logic frameworks help proof engineers do more advanced reasoning about program-37

specific properties. Iris [17, 23], VST [8], CHL [10], and Sepref [26] are just a few examples38

of such program logics. Traditionally, strong guarantees for compiled programs required com-39

posing program logics with verified compilers [8]. However, because functional specifications40

are often partial, preserving them through compilation sometimes does not require a correct41

compiler pass, much less global compiler correctness.42
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23:2 Correctly Compiling Proofs About Programs Without Proving Compilers Correct

To see an example of where correct compilation becomes too strict, consider a Hoare triple43 {
0 ≤ a ∧ 0 ≤ ϵ

}
y := 42; x := source_sqrt(a)

{
|a − x2| ≤ ϵ

}
, which says that after setting44

y to 42 and calling source_sqrt on a, the variable x stores a square root approximation of45

a within ϵ. Suppose that source_sqrt is compiled to some program target_sqrt such that46

if 0 ≤ a ∧ 0 ≤ ϵ, then after target_sqrt(a) runs, we have |a − x2| ≤ ϵ
2 . In the end, we still47

have |a − x2| ≤ ϵ for target_sqrt since ϵ
2 ≤ ϵ, which meets the specification. Moreover, the48

42 on the right-hand side of the assignment to y could be (mis)compiled to anything, and49

the specification would still be preserved. However, this compilation would be rejected by50

both certified compilation and translation validation, illustrating that compiler correctness is51

significantly more restrictive than specification preservation.52

In order to achieve guaranteed specification-preserving compiler passes, we present the53

proof compiler framework PotPie. PotPie takes an existing compiler and produces a proof54

compiler. A proof compiler takes a program, a specification, and a proof of the specification55

and compiles all three such that (1) the specification’s meaning is preserved, and (2) the56

compiled proof shows that the compiled program meets the compiled specification.57

PotPie is formally verified in Coq, and allows for partial specification-preserving com-58

pilation, even of incorrectly compiled programs. To get a sense of how PotPie differs59

from similar techniques, imagine a proof engineer has already shown the Hoare triple60

{0 ≤ a ∧ 0 ≤ ϵ}x := source_sqrt(a){|x2 − a| ≤ ϵ} and wants to prove an analogous Hoare61

triple about the compiled square root approximation. Suppose also that the proof engineer62

has a compiler T on hand, which happens to have a small bug that switches < to ≤ in63

programs and specifications. The square root program uses a while loop to approximate64

square roots, and the while loop condition contains at least one <. At this point, PotPie65

provides two options:66

1. Tree workflow: use T to instantiate a proof tree compiler that produces a target proof67

tree. After compiling the square root Hoare tree, they invoke the Tree Coq plugin which68

will check the proof tree, and if possible, produce a certificate that is checkable in Coq.69

Tree has only one proof obligation to invoke the plugin, but may fail in certain cases.70

2. CC workflow: use T to instantiate a correct-by-construction proof compiler by showing71

that it satisfies the equations in Figure 5. To call this proof compiler, the proof engineer72

must show that the square root program is well-formed. CC is complete in that if the73

translation preserves the specification, then it is possible to perform.74

Both methods work, even though the compiler T has a bug that causes miscompilation75

in the square root program. Because of this miscompilation, we cannot use translation76

validation, the state of the art for ensuring correct compilation for an unverified compiler.77

But the miscompilation does not affect our specification, so with PotPie, we can get strong78

guarantees about our compiled code regardless of miscompilation.79

We make the following contributions:80

1. We present the PotPie framework for specification-preserving proof compilation.81

2. We describe two workflows for the PotPie framework: CC and Tree.82

3. We demonstrate PotPie on several case studies, using code compilers with varying83

degrees of incorrectness to correctly compile proofs. Our case studies include various84

mathematical functions, such as infinite series and square root approximation.85

4. We prove the CC and Tree workflows sound in Coq.86

Non-Goals and Limitations Our work aims to complement, not replace, certified compilation.87

One potential motivation for alternative compiler correctness techniques is to ease the burden88

of compiler verification. However, easing the burden of compiler verification is not our89
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a ::= N | x | param k | a + a | a − a | f(a, . . . , a)
b ::= T | F | ¬b | a ≤ a | b ∧ b | b ∨ b

i ::= skip | x := a | i; i

| if b then i else i | while b do i

λ ::= (f, k, i, return x)
p ::= ({λ, . . . , λ}, i)

a ::= N | #k | a + a | a − a | f(a, . . . , a)
b ::= T | F | ¬b | a ≤ a | b ∧ b | b ∨ b

i ::= skip | push | pop | #k := a | i; i

| if b then i else i | while b do i

λ ::= (f, k, i, return a n)
p ::= ({λ, . . . , λ}, i})

Figure 1 Imp (left) and Stack (right) syntax, where a describes arithmetic expressions, b boolean
expressions, i imperative statements, λ function definitions, and p whole programs, which consist of
a set of functions and a “main” body. The evaluation of the main body yields the result of program.
For Imp functions, (f ,k,i,return x) is a function named f with k parameters that returns the value
of the variable x after executing the function body, i. For Stack functions (f, k, i, return a n), we
return the result of evaluating a after executing the body i, and then pop n indices from the stack.

goal, nor do we think that this is the case for our work at this time. Rather, our goal is90

demonstrate a complementary approach of specification-preserving compilation for program-91

specific specifications, even when the program itself is incorrectly compiled. Our work92

currently focuses on simple and closely related languages, and the compilers are likewise93

simple, though we do not believe that these choices are central to our approach. Currently,94

our work imposes significant limitations the kinds of control flow optimizations that can be95

performed. This simplifying decision made the problem initially tractable, but we do not96

believe it is inherent to our approach; we discuss a potential way of handling it in Section 7.97

2 Programs, Specifications, and Proofs98

In this section, we briefly present our six languages and how to compile programs and99

specifications, with Section 2.1 describing the programming languages and program compiler,100

Section 2.2 describing the specification languages and compiler, and Section 2.3 describing101

the proof languages (the proof compiler framework is described in Section 3). Here and102

throughout the paper, we include links such as 42 to relevant locations in our code.103

2.1 Programs104

Our languages Imp and Stack are both simple imperative languages that are similar in105

syntax (Figure 1) yet have differing memory models. Imp has an abstract environment106

with two components: a mapping of identifiers to their nat values, and function parameters,107

which are accessed param k construct, whereas Stack has a single function call stack, where108

new variables are pushed to the low indices and stack indices are accessed with the #k109

construct. Function calls in Imp are always mutation-free since functions are limited to their110

(immutable) parameters and local scope. Stack’s functions can access the entire stack.111

Bridging the Abstraction Gap The difference in memory model must be taken into account112

when compiling from Imp to Stack. We define an equivalence between variable environments113

and stacks 4 so that “sound translation” is a well-defined concept.114

▶ Definition 1. Let V be a finite set of variable names, and let φ : V → {1, . . . , |V |} be115

bijective with inverse φ−1. Then for all variable stores σ, parameter stores ∆, and stacks σs,116

we say that σ and ∆ are φ-equivalent to σs, written (σ, ∆) ≈φ σs, if (1) for 1 ≤ i ≤ |V |, we117

have σs[i] = σ(φ−1(i)), and (2) for |V | + 1 ≤ i ≤ |V | + |∆|, we have σs[i] = ∆ [i − |V |].118

This equivalence is entirely dependent on our choice of mapping between variables and stack119

slots. It has this form since parameters are always at the top of the stack at the beginning120
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compφ
a (n) ≜ n compφ

a (x) ≜ #φ(x)
compφ

a (param k) ≜ #(|V | + k + 1)
compφ

a (a1 op a2) ≜ compφ
a (a1) op compφ

a (a2)
compφ

a (f(a1, . . . , an)) ≜ f(compφ
a (a1), . . . , compφ

a (an))

compφ
b (T ) ≜ T compφ

b (F ) ≜ F

compφ
b (¬b) ≜ ¬compφ

b (b)
compφ

b (b1 op b2) ≜ compφ
b (b2) op compφ

b (b2)
compφ

b (a1 ≤ a2) ≜ compφ
a (a1) ≤ compφ

a (a2)
Figure 2 An arithmetic expression compiler compa (left) and a boolean expression compiler

compb (right). op stands for the appropriate binary operators: + and −, and ∧ and ∨, respectively

M ::= T | F | pn [e, . . . , e]
| M ∧ M | M ∨ M σ ⊨ T

True
map_evalσ [ai]n1 [vi]n1 pn vlist

σ ⊨ pn [a1, . . . , an]
N-ary

Figure 3 Syntax (left) and semantics (right) for base assertions for both Imp and Stack.
map_evalσ is a relation from lists of expressions to lists of values. The semantic interpretation is
parametric over the types of v, σ, and map_evalσ. Interpretations for ∧ and ∨ are standard.

of a function call, and are then pushed down as space for local variables is allocated, so121

parameters appear “after” (i.e., appended to) the local variables. Note that this implies122

|V | + |∆| ≤ |σs| while saying nothing about stack indices beyond |V | + |∆|.123

Compiling Programs Although the PotPie framework allows for some choice of compiler124

between Imp and Stack, most of our compilers follow a common structure. We give a125

translation for Imp arithmetic and boolean expressions (which we will refer to in sum as126

expressions from now on) in Figure 2. This infrastructure is a straightforward extension of127

the variable mapping function φ from Definition 1. The program compilers we deal with in128

our case studies (Section 4) define variations on this common structure.129

2.2 Specifications130

The specification languages both embed Imp or Stack expressions inside of them, respectively.131

Base assertions are modeled as n-ary predicates over the arithmetic and boolean expressions132

of the given language. The semantics for assigning a truth value to a formula (Figure 3,133

right) parameterize predicates over the value types. For example, if we have the assertion134

p1 a where a is an Imp expression that evaluates to v, then p1 a is true if and only if calling135

the Coq definition of p1 with v is a true Prop. We can define a program logic SM for the136

source language this way by using the atoms in Figure 3 to embed arithmetic and boolean137

expressions in Coq propositions. We add conjunction and disjunction connectives at the logic138

level. We can define TM for the target language similarly. We then use this to construct the139

following specification grammars:140

SM ::= SMe | SM ∧ SM | SM ∨ SM TM ::= (n, TMe) | TM ∧ TM | TM ∨ TM (1)141

where SMe and TMe are instances of the logic described in Figure 3 using Imp and Stack142

arithmetic and boolean expressions respectively.143

Because the minimum stack size required by the compilation might not be captured by
language expressions contained within the formula itself, we also want to specify a minimum
stack size in Stack specifications. This is represented by the following judgement:

|σ| ≥ n σ ⊨ TMe

σ ⊨ (n, TMe)
Stack Base

We made the decision to allow function calls within specifications. This is not essential to144
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compφ,k
spec(T ) ≜ (k, T )

compφ,k
spec(F ) ≜ (k, F )

compφ,k
spec(pn (e1, . . . , en)) ≜ (k, pn (compφ

expr(e1), . . . , compφ
expr(en)))

compφ,k
spec(SM1 op SM2) ≜ compφ,k

spec(SM1) op compφ,k
spec(SM2)

Figure 4 The specification compiler compφ,k
spec(SM), which is parameterized over compφ

expr (which
can be either compφ

a or compφ
b , depending on the type of expressions e). op is either ∧ or ∨.

our approach—one could disallow effectful constructs from expressions as in CLight [6]. For145

the current framework, we find it more natural to reason about effectful expressions in Imp.146

Compiling Specifications We can reuse φ : V → {1, . . . , |V |} and the expression compilers147

from Section 2.1 to define a specification compiler (see Figure 4): recurse over the source148

logic formula and compile the leaves, i.e., Imp expressions. If k is the number of function149

arguments, give each assertion a minimal stack size, |V | + k, to ensure well-formedness of the150

resulting Stack expressions within the specification, which is given as the maximum value151

of φ plus k, where k is the number of arguments. Note that this definition is parameterized152

over an expression compiler, which need not be fully correct. To guarantee correctness of a153

translated proof in the sense that the target proof “proves the same thing”, users must show154

that the specification compiler must be sound with respect to the user’s source specification155

(see Definition 3 and Section 3.2.2). This ensures that the compiled proof proves an analogous156

property even when the program is compiled incorrectly.157

2.3 Proofs158

Our logics are based on standard Hoare logic and are proven sound in Coq. Automatically159

ensuring that the rule of consequence’s implications are preserved by compilation would160

usually require correctness of compilation. To remove this requirement, we modify the rule161

of consequence so that implications must be in an implication database I, which is a list of162

pairs of specifications that satisfy the following definition:163

▶ Definition 2. I is valid if for each pair (P, Q) in I, ∀σ, σ ⊨ P ⇒ σ ⊨ Q.164

This implication database, which is present for both Imp and Stack, serves to (1) identify165

which implications must be preserved through compilation, and (2) make it easy to identify166

which source implication corresponds to which target implication across compilation. For the167

Stack logic, as a simplifying assumption, we further require all expressions in assignments,168

if conditions, or while conditions to be side effect-free, i.e., preserve the stack.169

3 Compiling Proofs170

PotPie’s two workflows share the same goal: to produce a term at the target representing171

a proof tree for the desired Stack-level property. To achieve this, both workflows have172

their own soundness theorems (Section 3.1), which need certain properties to be true of173

compiled programs and specifications. The workflows obtain these in different ways. Before174

being called, CC requires the user to prove certain equational properties about the compiler175

(Section 3.2.1) and well-formedness properties of the source program and proof (Section 3.2.3),176

and combines these to acquire the required syntactic and stack-preserving conditions for177

applying Stack Hoare rules. Tree simply compiles the Hoare proof tree, and its plugin178

performs an automated check (that can possibly fail) of whether the compiled tree is a179

valid Hoare proof. Additionally, both workflows require the user to manually translate the180

implication databases (Section 3.2.2) to retrieve Stack-level rule-of-consequence applications.181

CVIT 2016
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Table 1 Proof obligations and their relationship to the requirements for instantiating and invoking
proof compilers (PC) for each of our workflows, and what properties may be guaranteed for Tree by
these proof obligations. P means a user proof is required, A means that the plugin will attempt an
automated check, × means the condition is not required, and - means the condition is not applicable
to that column. “Trees WF” means the compiled code and assertions within the Stack Hoare tree
have the right syntactic shape for Hoare rule application. “Valid Tree” means that the tree is a
valid Stack Hoare proof (which is implied by a typechecked certificate). “CGC” indicates what is
needed to ensure that once a certificate is generated and typechecks, that it is correct, i.e., preserves
the meaning of the pre and postcondition. Since CC is correct-by-construction, all of the proof
obligations are required.

Tree CC
Create Invoke Guaranteeing Properties Create PC Invoke PCPC PC Plugin Trees WF Valid Tree CGC

Comp. Comm. × - - A A - P -

User

Spec DB - × P × P - - P
Pre/Post - × × × × P - P
Imp WF - × × - - - - P
preservesStack - × × A A - - P

A breakdown of which proof obligations are required for which workflow and the guarantees182

they provide can be found in Table 1. None of these proof obligations require full semantic183

preservation; they allow for some miscompilation of programs as long as compilation does184

not break the (possibly partial) specification.185

3.1 Soundness Theorems and Overview186

Consider the Imp Hoare triple {5 < 10}x := 5{x < 10}, which can be derived via a simple187

application of the Imp-level assignment rule. If we map x to stack slot #1, the “natural”188

translation of this Imp triple is the Stack triple {5 < 10}#1 := 5{#1 < 10}, which can189

be derived via Stack’s assignment Hoare rule. This translation seems “natural” for two190

reasons: it is derived using the “same” rules, and it is proving the “same” thing. We use191

the former to compile the proofs, and we use the latter to define a notion of soundness for192

specification translation 30 31 , which each workflow can guarantee in a different way:193

▶ Definition 3. For a given P , a specification compilation function compφ,k
spec is sound with194

respect to P if for all σ, ∆, σs such that (σ, ∆) ≈φ σs, we have σ, ∆ |= P ⇔ σs |= compφ,k
spec(P ).195

We can also define an informal notion of soundness for a proof compiler:196

▶ Definition 4. Given an Imp Hoare proof pf that proves the triple {P}c{Q}, a proof197

compiler PC is sound with regards to it if PC(pf) = pf ′ and pf ′ proves the triple198

{comp P}(comp c){comp Q}.199

Combining both notions of soundness lets us arrive at our definition of soundness for a proof200

compiler : if a specification and proof compiler are sound with regards to a specification and201

proof in the sense of Definitions 3 and 4, then the compiled version of that proof is both202

a valid proof at the target and proves the same thing that the source proof proved. The203

Tree workflow can achieve these guarantees in piecewise progression when certain proof204

obligations are met, and CC always guarantees both when it is called. The form Definition 4205

takes in our implementation is a method of constructing a term of type hl_stk (the Stack206

correct-by-construction Hoare proof type) from a term of type hl_Imp_Lang.207

Tree Proof Compiler The Tree workflow utilizes a proof compiler that separates proof208

and compilation, and has two components: a compiler that produces a proof tree 2 and a209

https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/ProofCompiler/ProofCompCodeCompAgnosticMod.v#L68
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/ProofCompiler/ProofCompCodeCompAgnosticMod.v#L69
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/ProofCompiler/TreeProofCompiler.v#L15
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Coq plugin, implemented in OCaml 5 , that checks the proof tree’s validity 6 . The compiler210

is parameterized over the code and specification compilers from Imp to Stack. The proof211

tree compiler component is sound in the sense that if the proof obligations for the CC proof212

compiler are satisfied, then it will always produce a sound tree 12 . The plugin can be used213

on any Stack proof tree and can optionally produce a certificate, which can be used to214

produce a Stack Hoare logic proof via this theorem 13 :215

216
1 Theorem valid_tree_can_construct_hl_stk217

2 (P Q: AbsState) (i: imp_stack) (facts': implication_env_stk)218

3 (fenv': fun_env_stk) (T: stk_hoare_tree):219

4 ∀ (V: stk_valid_tree P i Q facts' fenv' T), (* certificate type*)220

5 hl_stk P i Q facts' fenv'.221222

An instance of Definition 4 can be retrieved by an appropriate substitution of variables.223

We note that Tree is not complete: the requisite target-level properties could be true,224

and yet Tree will still fail. This can occur in the case of mutually recursive functions,225

along with some edge cases that we talk more about in Section 5.1. While Tree requires226

fewer proof obligations, it also provides fewer guarantees. One such guarantee it lacks is227

preservation of the pre and postcondition, i.e., specification-preserving compilation. This228

and other guarantees can be gained by showing the proof obligations indicated in Table 1.229

CC Proof Compiler This workflow is correct by construction. Given an Imp Hoare proof230

(hl_Imp_Lang) along with the CC proof obligations (described in Section 3.2), CC produces a231

Stack Hoare proof (hl_stk) of the same property 1 (some detail is omitted for brevity):232

233
1 Definition proof_compiler :234

2 ∀ (P Q: AbsEnv) (i: imp_Imp_Lang) (fenv: fun_env) (facts: implication_env)235

3 (var_to_stack_map: list string) (num_args: nat)236

4 (proof: hl_Imp_Lang P i Q facts fenv) (translate_facts: valid_imp_trans_def),237

5 (* well-formedness conditions and specification translation soundness *) →238

6 hl_stk (comp P) (comp i) (comp Q) (comp facts) (comp fenv).239240

Since the CC proof compiler is correct-by-construction, the type signature in the above Coq241

code guarantees the validity of the produced target Hoare proof. However, as compared242

to Tree, CC requires far more proof obligations before a CC proof compiler can even be243

instantiated, with invocation requiring several on top of the instantiation burden.244

3.2 Proof Obligations245

PotPie’s workflows both require some proof obligations in order to get target-level correctness246

guarantees. Table 1 breaks down these requirements for both workflows.247

3.2.1 Commutativity Equations – CC Only248

These code and specification compiler proof obligations relate the compiled programs and
specifications. CC requires that proof-compilable Imp programs and specifications satisfy the
equations in Figure 5—Tree has no such requirement (Table 1) and will simply fail if these
equations don’t hold. For example, consider the substitution performed by the assignment
rule. Given some P , in order to compile an application of the assignment rule, we want (2)
to hold. If we have this equality, we have the following, where P ′ = compφ,k

spec(P ):

compφ,k
pf ({P [x → a]} x := a {P}) =

{
P ′[φ(x) → compφ,k

code(a)]
}

φ(x):= a
{

P ′
}

This compiler proof obligation lets a CC proof compiler mechanically apply the Hoare rules.249

In practice, as long as the program compilers are executable, these conditions are provable250
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compφ,k
spec(P [x → a]) = (compφ,k

spec(P ))[φ(x) → compφ
a (a)] (2)

compφ,k
spec((p1 [b]) ∧ P ) =

(
k + |V |, (p1 [compφ

b (b)]) ∧ compφ,k
spec(P )

)
(3)

compφ,k
code(x := a) = #φ(x) := compφ

a (a) (4)
compφ,k

code(skip) = skip (5)
compφ,k

code(i1; i2) = compφ,k
code(i1); compφ,k

code(i2) (6)
compφ,k

code(if b then i1 else i2) = if compφ
b (b) then compφ,k

code(i1) else compφ,k
code(i2) (7)

compφ,k
code(while b do i) = while compφ

b (b) do compφ,k
code(i) (8)

Figure 5 Equations compilers must satisfy to be used to instantiate a proof compiler.

using reflexivity. These equations are the reason for the control-flow restrictions mentioned251

in the introduction and in Section 7. These equations also ensure that the specification252

compiler is “aware” of the way that expressions are compiled. For example, consider a code253

compiler that adds 1 to assignment statements’ right hand sides. This breaks the compilation254

of the assignment rule, as the specification compiler is “unaware” of a transformation that255

affects a Hoare rule application. Equations 2-4 and 7-8 in Figure 5 are to prevent such cases.256

3.2.2 Specification Translation Conditions – Tree & CC257

As we described in Section 2.3, the rule of consequence is the only Hoare rule that depends258

on the semantics of the program, and thus would require a completely correct compiler pass259

to completely automate. Our solution is to have the user specify which implications they260

are using in their Hoare proof in an implication database. Then the user proves that these261

implications are compiled soundly 7 (this is the “Spec DB” proof obligation in Table 1):262

▶ Definition 5. Given φ, k, and a function environment, an Imp implication P ⇒ Q has a263

valid translation if for all σ, ∆, σs, if (σ, ∆) ≈φ σs, then σs |= compφ,k
spec(P ) ⇒ compφ,k

spec(Q).264

While it lets us construct a proof in the target about the compiled program, it does not265

necessarily construct a proof of the same property, as the meaning of the precondition and266

postcondition could be destroyed by, for instance, compiling them both to ⊥.267

To prevent this, another proof obligation is to prove the pre/postcondition of the Imp268

Hoare proof sound with regards to the specification compiler (Definition 3). This guarantees269

that while program behavior can change, the specification remains the same. This is in270

Table 1 as the “Pre/Post” row. While it is required by CC, it is optional for Tree but is271

needed to guarantee correctness of a certificate, hence the P in the CGC column of Table 1.272

These conditions only need for compilation to preserve Definitions 3 and 5 and require273

no proofs of language-wide properties, nor of full compiler correctness. Rather, they require274

specific correctness properties for a finite set of assertions. In practice, we have found these275

proofs to be repetitive, and have built some tactics to solve these goals 28 29 . We have276

not built proof automation to generate a given proof’s implication database as a verification277

condition but we suspect this could be done via a weakest precondition calculation.278

3.2.3 Well-formedness Conditions – CC Only279

The last set of user proof obligations is specific to our choice of languages and logics.280

Specifically, while the syntax of Imp prevents most type errors, there are other ways a281

program can be malformed, e.g., calling a function with an incorrect number of arguments.282

These obligations show that all components of the source proof be well-formed. Additionally,283

any compiled functions should preserve the stack, so as to meet the preservesStack condition284

of the Stack logic. We have largely automated these proof burdens in our case studies.285

https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/ProofCompiler/ProofCompilableCodeCompiler.v#L714
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/ProofCompiler/ProofCompAuto.v
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Tactics/SemanTactics.v
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Table 2 The lines of code, number of theorems, and the time it took for the Tree plugin to
generate and check our case studies in Section 4.1. “Core” refers to proving the source Hoare triple.
“Tree” refers to how much work it took to get to the point where one could call the Tree plugin
(which is different from calling the tree compiler, which is simply a one-liner), and “TreeC” the
additional effort needed to ensure correctness. “CC” gives how much more work it would take to be
able to use the CC workflow after ensuring tree compilation correctness.

Multiplication Exponentiation Series Square Root
Core Tree TreeC CC Core Tree TreeC CC Core Tree TreeC CC Core Tree TreeC CC

LOC 209 104 56 508 478 107 54 362 679 174 45 630 406 154 43 286
Theorems 3 1 2 28 9 1 2 26 14 1 2 48 6 1 2 29

Tree CG (s) 0.172 0.154 2.781 4.279
Tree Check (s) 0.131 0.098 0.534 1.946

4 Case Studies286

We have two sets of case studies that highlight the tradeoffs of the PotPie framework:287

1. Partial Correctness with Incorrect Compilation (Section 4.1): We prove meaningful288

partial correctness properties of arithmetic approximation functions that are slightly289

incorrectly compiled. This set of case studies highlights two benefits of PotPie:290

a. Specification-Preserving Compilation: We invoke PotPie with a slightly buggy291

program compiler to produce proofs that meaningfully preserve the correctness specifi-292

cations down to the target level. Importantly, we obtain these meaningful target-level293

correctness proofs of our specification even though the program compiler does not294

preserve the full semantic behavior of the arithmetic approximation functions.295

b. Compositional Proof Compilation. We use PotPie to separately compile the296

correctness proofs of helper functions common to both approximation functions. Com-297

position of those helper proofs within the target-level proof of the arithmetic function298

comes essentially “for free,” modulo termination conditions.299

2. PotPie Three Ways (Section 4.2): We instantiate PotPie with three different variants300

of a program compiler (incomplete, incorrect, and correct but unverified), and301

briefly explore the tradeoffs of each of these instantiations.302

4.1 Partial Correctness with Incorrect Compilation303

We have written and proven correct two mathematics approximation programs in Imp.304

Both approximation programs use common helper functions, which we also prove correct305

(Section 4.1.1). We then build on and compose the helper proofs to prove our approximation306

programs correct up to specification even in the face of incorrect compilation (Sections 4.1.2307

and 4.1.3). Our incorrect compiler has the following bug, miscompiling < to ≤:308

compφ
badb(a1 < a2) ≜ compφ

a(a1) ≤ compφ
a(a2)309

compbadb is a buggy boolean expression compiler that turns our less-than macro into a310

less-than-or-equal-to expression. While we do not have a less than operator in the Imp311

language, we have a less than macro defined as a1 ≤ a2 ∧¬(a1 ≤ a2 ∧a2 ≤ a1). For simplicity,312

we will use < in this paper. The resulting program compiler 8 is correct for programs that313

do not contain <, and we use it throughout this subsection. We give a short summary of the314

proof effort that it took to prove these case studies in Table 2.315

4.1.1 Helper Functions316

We describe how we compile proofs about two helper functions: multiplication and exponen-317

tiation. For clarity, we omit environments in the lemmas we state here.318
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Multiplication The first helper function is a multiplication function, which behaves as319

expected (code in green is actually wrapped Coq terms, whereas code in black is an expression320

in our language substituted into a Coq term as per the semantics of our logic in Figure 3):321
322

1 { ⊤ }323

2 x := param 0; y := 0;324

3 while (1 ≤ x) do325

4 y := y + param 1;326

5 x := x - 1;327

6 { y = (param 0) · (param 1) }328329

The proof of this Imp Hoare triple is straightforward since the body of the function does330

not encounter the incorrect behavior of the compiler. By combining this triple with a331

termination proof, we are able to generate a helper lemma 9 that relates applications of the332

Imp multiplication function to Coq’s Nat.mul:333
334

Lemma mult_aexp_wrapper a1 a2 n1 n2: a1 ⇓ n1 → a2 ⇓ n2 → mult(a1, a2) ⇓ (n1 ∗ n2)%nat.335336

This lemma lets us reason more directly about nats. We use this lemma in the subsequent337

case studies, demonstrating how PotPie enables us to reuse the source Hoare proof of this338

triple to get the target-level version of this lemma almost for free—we still have to reprove339

termination at the target level, something we hope to address in future work.340

Exponentiation Exponentiation is similarly straightforward, except we use multiplication341

as defined above as a function in its body and thus must use the multiplication function342

wrapper to prove the loop invariant, and we obtain the following wrapper 10 :343
344

Lemma exp_aexp_wrapper : forall a1 a2 n1 n2, a1 ⇓ n1 → a2 ⇓ n2 → exp(a1, a2) ⇓ n2n1.345346

4.1.2 Geometric Series347

One example use case for partial correctness specifications is floating point estimation of348

mathematical functions, like sin(x) and ex, by way of computing infinite series with well-349

behaved error terms. Since floating point numbers are unable to represent all of the reals,350

we must approximate these functions within some error bound. As a simple version of this351

use case, we consider a program for calculating the geometric series
∑∞

i=1
1
xi within an error352

bound of ϵ = δn

δd
. We require x ≥ 2 so that the series converges, which simplifies some of our353

assertions for this example. While this is a toy example that would be easier to compute in354

its closed form—the series
∑∞

i=0 a · ri is known to converge to a
1−r for |r| < 1, it suffices as a355

simple example of using PotPie with an interesting partial specification. We cover a more356

realistic example in Section 4.1.3. The program we use to compute this series is as follows:357
358

1 { 2 ≤ x ∧ x = x ∧ δn ̸= 0 ∧ δd ̸= 0 ∧ 1 = 1; ∧x = x ∧ 2 = 2 }359

2 x := x; // the series denominator360

3 rn := 1; // the result numerator361

4 rd := x; // the result denominator (for i = 1)362

5 i := 2; // the next exponent363

6 { rn · xi − rn · xi−1 = rd · xi−1 − rd ∧ x = x ∧ 2 ≤ x ∧ 2 ≤ i } // loop invariant364

7 // the loop condition is equivalent to ϵ < 1
x−1 − rn

rd , and 1
x−1 =

∑∞
i=1

1
x365

8 while (mult(rn , δd · (x − 1)) + mult(rd , δn · (x − 1)) < mult(rd , δd)) do366

9 d := exp(x, i);367

10 rn := frac_add_numerator (rn , rd , 1, d); // a/b + c/d = (ad + cb)/(bd)368

11 rd := frac_add_denominator (rd , d); // fraction addition denominator369

12 i := i + 1;370

13 { ¬ (mult(rn , δd · (x − 1)) + mult(rd , δn · (x − 1)) < mult(rd , δd))371

14 ∧ (rn · xi − rn · xi−1 = rd · xi−1 − rd ∧ x = x ∧ 2 ≤ x ∧ 2 ≤ i) } // loop postcondition372

15 { δd · rd ≤ δn · (x − 1) · rd + δd · (x − 1) · rn } // program postcondition : 1
x−1 − rn

rd ≤ δn

δd
373
374

https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/rsa_impLang.v#L160
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/Exponentiation.v#L253
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For brevity, we omit assertions outside of the pre/postcondition, loop invariant, and loop375

postcondition. We show wrapped Coq Props and arithmetic terms in green, i.e. δn · (x − 1).376

Terms in black are Imp expressions. Note that we encounter the bug in our program377

compiler, which miscompiles the < in the while loop conditional. However, we are still able to378

compile this program and its proof to Stack because (1) the pre/postconditions’ meaning is379

preserved by compilation, and (2) the implication database is still valid, i.e., every compiled380

Imp implication is still an implication in Stack.381

To see (1), we will need to look at the underlying representation of our assertions. As382

given in Figure 3, our precondition and postcondition actually have the following form:383

(fun x’ rn’ rd’ i’ => 2 ≤ x’ ∧ x’ = x ∧ δn ̸= 0 ∧ δd ̸= 0 ∧ rn’ = 1 ∧ rd’ = x ∧ i’ = 2) x 1 x 2384

(fun rn’ rd’ => δd · rd’ ≤ δn · (x − 1) · rd’ + δd · (x − 1) · rn’) rn rd385

Everything after the anonymous function is actually an expression in the Imp language.386

These are the only parts of the assertions that are compiled by the specification compiler.387

For instance, x is a constant arithmetic expression in Imp, which wraps Coq’s nat type. The388

arithmetic compiler, compa, from Figure 2 compiles these to nat constants in the Stack389

language. For the variables rn and rd, compφ,k
a (rn) = #φ(rn). After compiling, we get the390

postcondition δd · #5 ≤ δn · (x − 1) · #5 + δd · (x − 1) · #2, or symbolically: 1
x−1 − #2

#5 ≤ δn

δd
.391

For (2), we have to show that every implication in the Imp implication database is392

compiled to a valid implication in Stack. The implication most relevant to the successful393

compilation of the proof is the last one, which implies the program’s postcondition. Since394

the Imp loop condition < gets compiled to <= in Stack, our negated loop condition becomes395

¬ (mult(#2, δd · (x − 1)) + mult(#5, δn · (x − 1)) ≤ mult(#5, δd))396

This is equivalent to the below inequality, which still implies the compiled postcondition.397

This is easily proved with Coq’s Psatz.lia tactic.398

mult(#5, δd) < mult(#2, δd · (x − 1)) + mult(#5, δn · (x − 1)) ≡ 1
x−1 − #2

#5 < δn

δd
399

4.1.3 Square Root400

The second approximation program we consider interacts with the same miscompilation and401

still meaningfully preserves the source specification. Given numbers a, b, ϵn, ϵd, we consider a402

square root approximation program that calculates some x, y such that | x2

y2 − a
b | ≤ ϵn

ϵd
. We403

can project the postcondition entirely into Coq terms, multiplying through both sides by the404

denominator so we can express it in our language. After writing the program, we come up405

with the following loop condition, which represents ϵn

ϵd
<

∣∣∣ x2

y2 − a
b

∣∣∣ (· is syntactic sugar for406

mult, and < is actually the Imp less-than macro):407

loop_cond ≜ (y ·y ·b·ϵn < y ·y ·a·ϵd − x·x·a·ϵd) ∨ (y ·y ·b·ϵn < x·x·b·ϵd − y ·y ·a·ϵd)408

Our Imp square root program and specification is given by the following.409

410
1 {⊤}411

2 x := a; y := mult (2, b);412

3 inc_n := a; inc_d := mult (2, b);413

4 while ( loop_cond ) do414

5 inc_d := mult (2, inc_d);415

6 if (mult(mult(y, y), mult(a, ϵd)) ≤ mult(mult(x, x), mult(b, ϵd)))416

7 then x := frac_sub_numerator (x, y, inc_n , inc_d);417

8 else x := frac_add_numerator (x, y, inc_n , inc_d);418

9 y := frac_add_denominator (y, inc_d);419

10 { ¬loop_condition ∧ ⊤ } =⇒420

11 { ((x · x · b · ϵd) − (y · y · a · ϵd) ≤ y · y · b · ϵn) ∧ ((y · y · a · ϵd) − (x · x · b · ϵd) ≤ y · y · b · ϵn) }421422
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Most of the rules of consequence are straightforward. The only nontrivial implication423

involved is the final rule of consequence for the postcondition. The loop’s postcondition is424

¬
(

ϵn

ϵd
<

∣∣∣ x2

y2 − a
b

∣∣∣) ≡
∣∣∣ x2

y2 − a
b

∣∣∣ ≤ ϵn

ϵd
, which directly gets us the program postcondition.425

During compilation, the loop condition is miscompiled: the program compiler changes <426

to ≤. This results in the following target loop condition, where again, mult is represented427

by ·. Note this is not green since it represents an expression in Stack, not a Coq one.428

stk_loop_cond ≜ #1 · #1 · b · ϵn ≤ #1 · #1 · a · ϵd − #4 · #4 · b · ϵd429

∨ #1 · #1 · b · ϵn ≤ #4 · #4 · b · ϵd − #1 · #1 · a · ϵd430

Compared to the target program and proof, the main difference is in the final application of431

the rule of consequence, where the incorrect behavior of the compiler appears and changes432

the semantics of the loop condition. The programs have meaningfully different semantics,433

and those meaningfully different semantics do manifest in the application of the while rule.434

435
1 {(⊤, ⊤)}436

2 push; push; push; push;437

3 #4 := a; #1 := mult (2, b);438

4 #3 := a; #2 := mult (2, b);439

5 {4, ⊤}440

6 while ( stk_loop_cond ) do441

7 #2 := mult (2, #2);442

8 if (mult(mult (#1, #1) , mult(a, ϵd)) ≤ mult(mult (#4, #4) , mult(a, ϵd)))443

9 then #4 := frac_sub_numerator (#4, #1, #3, #2);444

10 else #4 := frac_add_numerator (#4, #1, #3, #2);445

11 #1 := frac_add_denominator (#1, #2)446

12 {(4, ¬target_loop_condition )) /\ (4, ⊤)} =⇒447

13 {4, (#4·#4·b· ϵd) − (#1·#1· a·ϵd) ≤ (#1·#1·b·ϵn) ∧ ((#1 · #1·a·ϵd) − (#4·#4·b·ϵd) ≤ #1·#1·b·ϵn)}448449

While the loop condition is indeed miscompiled, the postcondition uses Coq’s ≤, so450

the postcondition is not. Even though the unsound behavior of the compiler changes the451

semantics of the loop invariant, it is not enough to break the implication between the452

loop condition and the Coq-wrapped loop condition. Further, because of the way that the453

postcondition projects into Coq, the final implication is almost completely provable via454

applications of helper lemmas from Section 4.1.1 and the tactics inversion and Psatz.lia.455

4.2 PotPie Three Ways456

PotPie makes it easy to swap out control-flow-preserving program compilers and still reuse457

the same infrastructure. We instantiate PotPie with three variants of a program compiler,458

and use these on three small programs: shift (left-shift) 14 , max 15 16 , and min 17 :459

1. An incomplete program compiler 18 that is missing entire cases of the source460

language grammar. Only shift can be compiled using the incomplete proof compiler.461

2. An incorrect program compiler 19 that contains a mistake and an unsafe optimization,462

in a similar vein to the previous examples. We can compile max using it, but not min.463

3. An unverified correct program compiler 20 that always preserves program and464

specification behavior. This can be used to proof compile all of the programs.465

These examples show we are able to instantiate the PotPie framework for several different466

compilers, and PotPie is compatible with correct compilers as well. While we are able to467

invoke CC compilers with all of these case studies, the Tree certificate generator fails for468

max due to a plugin bug, though the plugin’s tree validity checker does work and returns true.469

https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/ExampleLeftShift_Incomplete.v
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/MaxIncorrectProofCompilationExample.v
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/MaxUnprovenCorrectProofCompilationExample.v
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/MinProofCompilationExample.v
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/ProofCompilers/IncompleteProofCompiler.v
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/ProofCompilers/BuggyProofCompiler.v
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Examples/ProofCompilers/UnprovenCorrectProofCompiler.v
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5 Implementation470

While much of our proof development for PotPie is implemented in Coq, the Tree plugin471

is implemented in OCaml (Section 5.1). We prove that PotPie is sound for both workflows472

(Section 5.2) and keep PotPie’s trusted computing base small (Section 5.3).473

5.1 The Tree Plugin474

The Tree plugin is implemented in OCaml, and consists of about 2.2k LOC. While this is475

not a trivial amount of engineering, much of it consists of code that wraps Coq’s OCaml476

API. Additionally, such a plugin only has to be created once per target language-logic pair,477

and is completely independent from compilation. Indeed, the plugin can be called on any478

Stack Hoare tree—the tree need not be the result of compilation. While Table 1 indicates479

that the plugin automates a check for the commutativity equations from Section 3.2.1, this480

is because the properties checked by the plugin imply the commutativity equations for the481

included Tree proof compiler in our code 2 —it never actually checks the commutativity482

equations themselves. This makes Tree more flexible than the CC approach.483

The plugin is called on a Stack tree, function environment, implication database (with484

proof of its validity), and list of functions. Here we call it on our multiplication example:485

486
1 Certify (MultTargetTree.tree) (MultTargetTree.fenv) (ProdTargetTree.facts)487

2 (MultValidFacts.valid_facts) (MultTargetTree.funcs) as mult.488

3 Check mult.489490

mult contains the answer returned by the plugin. If the plugin is set to generate certificates491

and it is successful, mult has type stk_valid_tree. Otherwise, mult is a Coq bool.492

The plugin recurses over the input tree and attempts to construct the certificate 21 .493

This may fail if the tree is malformed or there are mutually recursive functions. As we saw494

in Section 2.2, the Stack logic requires that all expressions preserve the stack, which is495

represented by the relation exp_stack_pure_rel 3 . However, due to the semantics of Stack496

functions, we need to know that all function calls preserve the stack, and showing that497

exp_stack_pure_rel is true in the presence of mutually recursive functions would lead to an498

infinite loop. If certificate generation fails, the plugin tries to provide a boolean answer as499

a fallback mechanism. It does this by checking each function for stack-preserving behavior500

modulo the behavior of other functions 23 , then checking the proof tree recursively 24 .501

As we saw in Table 2, the certificate generator and tree checking algorithms are fairly502

performant. This is due to several caching and reduction algorithm optimizations we made.503

Before applying optimizations, the series and square root examples took >10 minutes to504

generate certificates, and now take <5 seconds. The main bottleneck was Coq’s δ-reductions,505

which unfold constants. Our plugin provides an option to treat certain functions as “opaque”506

inside the plugin 27 , leaving their constants folded and speeding up normalization. This507

does not change the user’s Coq environment. The plugin also uses unification (for example,508

to match with constructors of option types 32 ) to avoid all but one call to normalization,509

which we found to significantly improve performance.510

5.2 Formal Proof511

Our Coq formalization includes two proof of soundness, one for each of the workflows, as512

well as all of the case studies from Section 4. The CC soundness proof 1 takes the form513

of a correct-by-construction function that takes a source Hoare proof, the well-formedness514
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Table 3 The proof engineering effort that went into stating and formalizing PotPie, including
the infrastructure to support the code and spec languages, logics, the compilers, the case studies,
and automation. Here, “specs” means the number of Definitions, Fixpoints, and Inductives. WF
stands for well-formed, Insts. for instantiations of CC compilers, and Auto for automation. “Base
Props” refers to code related to the base assertions seen in Figure 3.

Category Imp Stack Base Compiler Insts. Case Auto Other TotalLang Logic WF Lang Logic WF Props Code Spec Tree CC Studies
LOC 808 1948 3605 2593 1077 5635 941 1102 159 780 3045 2133 6971 2914 3225 36936

Theorems 15 67 103 91 17 204 37 44 2 17 93 52 288 31 105 1166
Specs 43 32 51 29 51 63 31 25 14 13 40 100 238 50 107 887

conditions, and the implication translation, and produces a verified Hoare proof in the target,515

as described in Section 3.1. For Tree, we prove that if all of the obligations for CC are516

satisfied, then the compiled tree is valid 12 . As we mentioned in Section 3.1, we additionally517

show that when the OCaml plugin 5 generates a certificate that typechecks, the certificate518

can be used to obtain an hl_stk proof.519

We loosely based our code on Xavier Leroy’s course on mechanized semantics [29]. The520

lines of code (LOC) numbers for our proof development in Table 3 may be surprisingly large521

when compared to the size of Leroy’s course materials, but there are several key differences.522

First, our languages include functions, making our semantics more difficult to reason about523

than the course’s semantics. However, functions also give us the opportunity to reason about524

the composition of programs and their proofs (Section 4.1), so we stand by this decision.525

Second, our target language is far less well-behaved than either of the languages in the course.526

Third, PotPie supports two different workflows, two separate proof compilers that work to527

get guarantees even for incorrect compilation.528

5.3 Trusted Computing Base (TCB)529

PotPie’s two workflows for proof compilation have different TCBs and provide different levels530

of guarantees. The CC proof compiler’s TCB consisting of the Coq kernel, the mechanized531

semantics, the definition of the Hoare triple, and two localized Uniqueness of Identity Proofs532

(UIP) axioms for reasoning about the equalities between dependent types. UIP, which is533

consistent with Coq, states that any two equality proofs are equal for all types—we instead534

assume that equality proofs are equal to each other for two particular types, AbsEnvs 25535

(the implementation of SM from Section 2.2) and function environments 26 . This does not536

imply universal UIP but is similarly convenient for proof engineering. Whenever all of its537

proof obligations can be satisfied, the correct-by-construction proof compiler is guaranteed to538

produce a correct proof. However, the resulting proof object may not be independent from539

the source semantics, due to various opaque proof terms that cannot be further reduced.540

The Tree plugin can either generate a certificate or run a check on a proof tree, returning541

its validity as a boolean. The certificate generator has a strictly smaller TCB than CC since542

it does not assume any form of UIP. The certificate generator works by generating a term543

of type stk_valid_tree 22 . Since this term must still be type-checked in Coq for it to be544

considered valid, this does not add to the TCB. The Tree boolean proof tree checker has its545

own “kernel,” also implemented in OCaml, for checking proof trees, which adds to its TCB.546

While it does not imply formal correctness, it can boost confidence in compiled proofs.547

6 Related Work and Discussion548

Early work on compiling proofs positioned itself as an extension of proof-carrying code [34].549

A 2005 paper [4] stated a theorem relating source and target program logics. Early work [32]550

https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/ProofCompiler/TreeProofCompiler.v#L70
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/
https://github.com/uwplse/potpie/tree/v0.2/Imp_LangTrick/Imp/Imp_LangLogPropDec.v#L19
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/ProofCompiler/ProofCompilerHelpers.v#L100
https://github.com/uwplse/potpie/tree/v0.4/Imp_LangTrick/Stack/StkHoareTree.v#L61
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transformed Hoare-style proofs about Java-like programs to proofs about bytecode imple-551

mented in XML. Later work [36] implemented proof-transforming compilation, trans-552

forming proof objects from Eiffel to bytecode, and formalizing the specification compiler in553

Isabelle/HOL, with a hand-written proof of correctness of the proof compiler. Subsequent554

work [15] showed how to embed the compiled bytecode proofs into Isabelle/HOL. Our work555

is the first we know of to formally verify the correctness of the proof compiler, and to use it556

to support specification-preserving compilation in the face of incorrect program compilation.557

Existing work on certificate translation [3, 25], which is similar but focuses on compiler558

optimizations, may help us relax control-flow restrictions.559

There is a lens through which our work is related to type-preserving compilation:560

compiling programs in a way that preserves their types. There is work on this defined on a561

subset of Coq for CPS [7] and ANF [20] translations. As the source and target languages562

both have dependent types, this can likewise be used to compile proofs while preserving563

specifications. Our work focuses on compiling program logic proofs instead.564

Our work implements a certified proof transformation in Coq for an embedded program565

logic. Proof transformations were introduced in 1987 to bridge automation and usability [38],566

and have since been used for proof generalization [14, 19, 16], reuse [30], and repair [40].567

The golden standard for correct compilation is certified compilation: formally proving568

compilers correct. The CompCert verified C compiler [28, 27] lacks bugs present in other569

compilers [44]. The CakeML [24] verified implementation of ML includes a verified compiler.570

Oeuf [31] and CertiCoq [2] are certified compilers for Coq’s term language Gallina. Certified571

compilation is desirable when possible, but real compilers may be unverified, incomplete, or572

incorrect. Our work complements certified compilation by exploring an underexplored part of573

the design space of compiler correctness: compilation that is specification-preserving for a574

given source program and (possibly partial) specification, even when the compilation may not575

be fully meaning-preserving for that program. The original CompCert paper [27] brought576

up the possibility of specification-preserving compilation as part of a design space that is577

complementary to, not in competition with, certified compilation. We agree; it expands578

the space of guarantees one can get for compiled programs—even when those programs are579

incorrectly compiled. It also expands the means by which one may get said guarantees.580

Our work implements a kind of certifying compilation: producing compiled code and581

a proof that its compilation is correct. For example, COGENT’s certifying compiler proves582

that, for a given program compiled from COGENT to C, target code correctly implements a583

high-level semantics embedded in Isabelle/HOL [1, 41]. Certifying compilation shares the584

benefit that the compiler may be incorrect or incomplete, yet still produce proofs about the585

compiled program. Most prior work on certifying compilation that we are aware of targets586

general properties (like type safety) rather than program-specific ones. One exception is587

Rupicola [39], a framework for correct but incomplete compilation from Gallina to low-level588

code using proof search, which focuses on preservation of program-specific specifications589

proven at the source level like we do. But it does not appear to address the case when the590

program itself is incorrectly compiled, nor the case where there already exists an unverified591

complete program compiler. Our work adds to the space of certifying compilation by592

preserving program-specific partial specifications proven at the source level even when the593

program itself is compiled incorrectly, with the added benefit of compositionality.594

One immensely practical method for showing that programs compiled with unverified595

compilers preserve behavior is translation validation. In translation validation, the596

compiler produces a proof of the correctness of a particular program’s compilation, which597

then needs to be checked [35]. Our work is in a similar spirit, but distinguishes itself in that598
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our method does not rely on functional equivalence for the particular compiled program.599

Our method makes it possible to show that a compiler preserves a partial specification when600

the program is miscompiled in ways that are not relevant to the specification.601

Section 4.1.1 shows in a limited context our method’s potential for compositionality.602

Similar motivation is behind (much more mature) work in compositional certified compila-603

tion [43, 13, 18]. DimSum [42] defines an elegant and powerful language-and-logic-agnostic604

framework for language interoperability, though to get guarantees, it leans heavily on data605

refinement arguments that show a simulation property stronger than what our framework606

requires. We hope that in the future, we will make our compositional workflow more sys-607

tematic and fill the gap of compositional multi-language reasoning in a relaxed correctness608

setting—by linking compiled proofs directly in a common target logic. Similar motivations609

are behind linking types [37], which are extensions to type systems for reasoning about610

correct linking in a multilanguage setting. We expect tradeoffs similar to those between our611

work and type-preserving compilation to arise in this setting.612

Frameworks based on embedded program logics (e.g., Iris [17, 23], VST-Floyd [8],613

Bedrock [11, 12], YNot [33], CHL [10], Sepref [26], and CFML [9]) help proof engineers614

write proofs in a proof assistant about code with features that the proof assistant lacks. C615

programs verified in the VST program logic are, by composition with CompCert, guaranteed616

to preserve their specifications even after compilation to assembly code [5]. Our work aims to617

create an alternative toolchain for preserving guarantees across compilation that allows the618

program compiler to be unverified or even incorrect, even for the program being compiled.619

Relative to practical frameworks like Iris and VST, the program logics we use for this are620

much less mature. We hope to extend our work to more practical logics and lower-level621

target languages in the future, so that users of toolchains like VST can get guarantees about622

compiled programs even in the face of incorrect compilation.623

7 Conclusion624

We showed how compiling proofs across program logics can empower proof engineers to625

reason directly about source programs yet still obtain proofs about compiled programs—even626

when they are incorrectly compiled. Our implementation PotPie and its two workflows, CC627

and Tree, are formally verified in Coq, providing guarantees that compiled proofs not only628

prove their respective specifications, but also are correctly related to the source proofs. Our629

hope is to provide an alternative to relying on verified program compilers without sacrificing630

important correctness guarantees of program specifications.631

Future Work In this work, we have not tackled the problem of control flow optimizations.632

We believe the challenges of bridging abstraction levels and verifying control flow-modifying633

optimizations are mostly orthogonal, and that the latter is out of our scope. In future work,634

we would like to investigate ways our work could be composed with control flow optimizations.635

For example, we may be able to leverage Kleene algebras with tests (KAT) [21] to reason636

about control flow optimizations. An optimization pass could extract a proof subtree and637

return the optimized subprogram, while preserving semantic equality via KAT. This approach638

may even be able to leverage a Hoare triple’s preconditions to apply optimizations that639

would be otherwise unsound [22]. For an example of KATs applied to existing compiler640

optimizations, see existing work [21]. Beyond relaxing control flow restrictions, other next641

steps include supporting more source languages and logics, supporting additional linking of642

target-level proofs, implementing optimizing compilers, and bringing the benefits of proof643

compilation to more practical frameworks.644
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